Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 142(16): 2775-80, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26160899

RESUMO

Endothelin signaling is essential for neural crest development, and dysregulated Endothelin signaling is associated with several neural crest-related disorders, including Waardenburg and other syndromes. However, despite the crucial roles of this pathway in neural crest development and disease, the transcriptional effectors directly activated by Endothelin signaling during neural crest development remain incompletely elucidated. Here, we establish that the MADS box transcription factor MEF2C is an immediate downstream transcriptional target and effector of Endothelin signaling in the neural crest. We show that Endothelin signaling activates Mef2c expression in the neural crest through a conserved enhancer in the Mef2c locus and that CRISPR-mediated deletion of this Mef2c neural crest enhancer from the mouse genome abolishes Endothelin induction of Mef2c expression. Moreover, we demonstrate that Endothelin signaling activates neural crest expression of Mef2c by de-repressing MEF2C activity through a Calmodulin-CamKII-histone deacetylase signaling cascade. Thus, these findings identify a MEF2C-dependent, positive-feedback mechanism for Endothelin induction and establish MEF2C as an immediate transcriptional effector and target of Endothelin signaling in the neural crest.


Assuntos
Endotelinas/metabolismo , Retroalimentação Fisiológica/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Crista Neural/fisiologia , Transdução de Sinais/fisiologia , Animais , Galactosídeos , Hibridização In Situ , Indóis , Fatores de Transcrição MEF2/metabolismo , Camundongos , Camundongos Transgênicos , Crista Neural/metabolismo , beta-Galactosidase
2.
Hum Mol Genet ; 24(15): 4340-52, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25954033

RESUMO

Cleft lip and/or palate (CL/P) are common structural birth defects in humans. We used exome sequencing to study a patient with bilateral CL/P and identified a single nucleotide deletion in the patient and her similarly affected son­c.546_546delG, predicting p.Gln183Argfs*57 in the Distal-less 4 (DLX4) gene. The sequence variant was absent from databases, predicted to be deleterious and was verified by Sanger sequencing. In mammals, there are three Dlx homeobox clusters with closely located gene pairs (Dlx1/Dlx2, Dlx3/Dlx4, Dlx5/Dlx6). In situ hybridization showed that Dlx4 was expressed in the mesenchyme of the murine palatal shelves at E12.5, prior to palate closure. Wild-type human DLX4, but not mutant DLX4_c.546delG, could activate two murine Dlx conserved regulatory elements, implying that the mutation caused haploinsufficiency. We showed that reduced DLX4 expression after short interfering RNA treatment in a human cell line resulted in significant up-regulation of DLX3, DLX5 and DLX6, with reduced expression of DLX2 and significant up-regulation of BMP4, although the increased BMP4 expression was demonstrated only in HeLa cells. We used antisense morpholino oligonucleotides to target the orthologous Danio rerio gene, dlx4b, and found reduced cranial size and abnormal cartilaginous elements. We sequenced DLX4 in 155 patients with non-syndromic CL/P and CP, but observed no sequence variants. From the published literature, Dlx1/Dlx2 double homozygous null mice and Dlx5 homozygous null mice both have clefts of the secondary palate. This first finding of a DLX4 mutation in a family with CL/P establishes DLX4 as a potential cause of human clefts.


Assuntos
Encéfalo/anormalidades , Fenda Labial/genética , Fissura Palatina/genética , Proteínas de Homeodomínio/genética , Anormalidades Maxilomandibulares/genética , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Animais , Proteína Morfogenética Óssea 4/genética , Encéfalo/patologia , Fenda Labial/patologia , Fissura Palatina/patologia , Exoma/genética , Regulação da Expressão Gênica no Desenvolvimento , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/biossíntese , Humanos , Anormalidades Maxilomandibulares/patologia , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Morfolinos , Fatores de Transcrição/biossíntese , Peixe-Zebra
3.
Hum Mol Genet ; 22(4): 696-703, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23161670

RESUMO

Focal facial dermal dysplasia (FFDD) Type IV is a rare syndrome characterized by facial lesions resembling aplasia cutis in a preauricular distribution along the line of fusion of the maxillary and mandibular prominences. To identify the causative gene(s), exome sequencing was performed in a family with two affected siblings. Assuming autosomal recessive inheritance, two novel sequence variants were identified in both siblings in CYP26C1-a duplication of seven base pairs, which was maternally inherited, c.844_851dupCCATGCA, predicting p.Glu284fsX128 and a missense mutation, c.1433G>A, predicting p.Arg478His, that was paternally inherited. The duplication predicted a frameshift mutation that led to a premature stop codon and premature chain termination, whereas the missense mutation was not functional based on its in vitro expression in mammalian cells. The FFDD skin lesions arise along the sites of fusion of the maxillary and mandibular prominences early in facial development, and Cyp26c1 was expressed exactly along the fusion line for these facial prominences in the first branchial arch in mice. Sequencing of four additional, unrelated Type IV FFDD patients and eight Type II or III TWIST2-negative FFDD patients revealed that three of the Type IV patients were homozygous for the duplication, whereas none of the Type II or III patients had CYP26C1 mutations. The seven base pairs duplication was present in 0.3% of healthy controls and 0.3% of patients with other birth defects. These findings suggest that the phenotypic manifestations of FFDD Type IV can be non-penetrant or underascertained. Thus, FFDD Type IV results from the loss of function mutations in CYP26C1.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Displasia Ectodérmica/genética , Mutação de Sentido Incorreto , Animais , Células COS , Chlorocebus aethiops , Sistema Enzimático do Citocromo P-450/metabolismo , Família 26 do Citocromo P450 , Análise Mutacional de DNA , Displasia Ectodérmica/enzimologia , Displasias Dérmicas Faciais Focais , Mutação da Fase de Leitura , Estudos de Associação Genética , Humanos , Camundongos , Repetições de Microssatélites
4.
Am J Ophthalmol Case Rep ; 7: 102-106, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29260090

RESUMO

PURPOSE: The genetic causes of anophthalmia, microphthalmia and coloboma remain poorly understood. Missense mutations in Growth/Differentiation Factor 3 (GDF3) gene have previously been reported in patients with microphthalmia, iridial and retinal colobomas, Klippel-Feil anomaly with vertebral fusion, scoliosis, rudimentary 12th ribs and an anomalous right temporal bone. We used whole exome sequencing with a trio approach to study a female with unilateral anophthalmia, kyphoscoliosis and additional skeletal anomalies. OBSERVATIONS: Exome sequencing revealed that the proposita was heterozygous for c.796C > T, predicting p.Arg266Cys, in GDF3. Sanger sequencing confirmed the mutation and showed that the unaffected mother was heterozygous for the same missense substitution. CONCLUSIONS AND IMPORTANCE: Although transfection studies with the p.Arg266Cys mutation have shown that this amino acid substitution is likely to impair function, non-penetrance for the ocular defects was apparent in this family and has been observed in other families with sequence variants in GDF3. We conclude p.Arg266Cys and other GDF3 mutations can be non-penetrant, making pathogenicity more difficult to establish when sequence variants in this gene are present in patients with structural eye defects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA