Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Neurobiol Dis ; 175: 105922, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371059

RESUMO

Our previous study suggests that hippocampal cysteinyl leukotriene receptor 1 (CysLT1R) could be involved in depression. Herein we hypothesize that CysLT1R may regulate depression by affecting synaptic glutamate cycling based on existence of CysLT1R in the astrocytes that participate in occurrence of depression. We found that CysLT1R expression was significantly increased in the astrocyte of chronic unpredictable mild stress (CUMS)-induced depression-like mice, CysLT1R astrocyte-specific conditional knockout (AcKO) significantly improved depression-like behaviors, as indicated by decreased immobility time in the forced swimming test and tail suspension test and increased sucrose preference in the sucrose preference test, and knockdown of CysLT1R in the astrocyte of dentate gyrus (DG), the region with the most significant increase of CysLT1R in the astrocyte of depression-like mice, produced similar effects. Correspondingly, overexpression of CysLT1R in the astrocyte of DG induced depression-like behaviors in mice. The further study showed that CysLT1R AcKO ameliorated synaptic plasticity impairment, as reflected by increased synapse, LTP and PSD95, and promoted glutamate transporter 1 (GLT-1) expression by inhibiting NF-κB p65 nuclear translocation mediated by ß-arestin2 and clatrhin, subsequently decreased glutamate in synaptic cleft and GluN2B on postsynaptic membrane in depression-like mice. The present study also showed that GLT-1 agonist or NF-κB inhibitor ameliorated depressive-like behaviors induced by overexpression of the astrocyte CysLT1R of DG. Our study demonstrated that astrocyte CysLT1R regulated depression by modulating glutamate synaptic transmission, suggesting that CysLT1R could be a potential target for developing novel drugs of anti-depression.


Assuntos
Astrócitos , Depressão , Ácido Glutâmico , Receptores de Leucotrienos , Transmissão Sináptica , Animais , Camundongos , Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , NF-kappa B/metabolismo , Estresse Psicológico , Sacarose/metabolismo , Sacarose/farmacologia , Receptores de Leucotrienos/metabolismo , Depressão/metabolismo , Depressão/patologia
2.
Biotechnol Appl Biochem ; 69(4): 1459-1473, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34159631

RESUMO

To investigate the properties of carotenoids from the extremophile Deinococcus xibeiensis R13, the factors affecting the stability of carotenoids extracted from D. xibeiensis R13, including temperature, illumination, pH, redox chemicals, metal ions, and food additives, were investigated. The results showed that low temperature, neutral pH, reducing agents, Mn2+ , and food additives (xylose and glucose) can effectively improve the stability of Deinococcus carotenoids. The carotenoids of D. xibeiensis R13 exhibited strong antioxidant activity, with the scavenging rate of hydroxyl radicals reaching 71.64%, which was higher than the scavenging efficiency for 1,1-diphenyl-2-picrylhydrazyl free radicals and 2,2'-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) free radicals (44.55 and 27.65%, respectively). In addition, the total antioxidant capacity reached 0.60 U/ml, which was 2.61-fold that of carotenoids from the model strain Deinococcus radiodurans R1. Finally, we predicted the gene clusters encoding carotenoid biosynthesis pathways in the genome of R13 and identified putative homologous genes. The key enzyme genes (crtE, crtB, crtI, crtLm, cruF, crtD, and crtO) in carotenoid synthesis of D. xibeiensis R13 were cloned to construct the multigene coexpression plasmids pET-EBI and pRSF-LmFDO. The carotenoid biosynthesis pathway was heterologously introduced into engineered Escherichia coli EBILmFDO, which exhibited a higher yield (7.14 mg/L) than the original strain. These analysis results can help us to better understand the metabolic synthesis of carotenoids in extremophiles.


Assuntos
Carotenoides , Deinococcus , Antioxidantes/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Deinococcus/genética , Deinococcus/metabolismo , Aditivos Alimentares , Radicais Livres/metabolismo
3.
Crit Rev Biotechnol ; 41(2): 273-299, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33525937

RESUMO

With the rapid development of industry and agriculture, large amounts of organic pollutants have been released into the environment. Consequently, the degradation of refractory organic pollutants has become one of the toughest challenges in remediation. To solve this problem, intimate coupling of photocatalysis and biodegradation (ICPB) technology, which allows the simultaneous action of photocatalysis and biodegradation and thus integrates the advantages of photocatalytic reactions and biological treatments, was developed recently. ICPB consists mainly of porous carriers, photocatalysts, biofilms, and an illuminated reactor. Under illumination, photocatalysts on the surface of the carriers convert refractory pollutants into biodegradable products through photocatalytic reactions, after which these products are completely degraded by the biofilms cultivated in the carriers. Additionally, the biofilms are protected by the carriers from the harmful light and free radicals generated by the photocatalyst. Compared with traditional technologies, ICPB remarkably improves the degradation efficiency and reduces the cost of bioremediation. In this review, we introduce the origin and mechanisms of ICPB, discuss the development of reactors, carriers, photocatalysts, and biofilms used in ICPB, and summarize the applications of ICPB to treat organic pollutants. Finally, gaps in this research as well as future perspectives are discussed.


Assuntos
Poluentes Ambientais , Biodegradação Ambiental , Biofilmes , Catálise , Titânio
4.
Bull Environ Contam Toxicol ; 107(2): 185-193, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32435844

RESUMO

Detection and removal of pesticides have become increasingly imperative as the widespread production and use of pesticides severely contaminate soil and groundwater and cause serious problems to non-target species such as human and animals. Recently, new two-dimensional materials beyond graphene (e.g., transition metal dichalcogenides, layered double hydroxides), called post-graphene two-dimensional materials (pg-2DMs), have exhibited promising potentials in detecting and removing pesticides due to their unique physiochemical attributes such as high photocatalytic activity and large specific surface area. This review summarizes the recent advances of utilizing pg-2DMs to detect, degrade and adsorb pesticides (e.g., thiobencarb, methyl parathion, paraquat). The current gaps and future prospects of this field are discussed as well.


Assuntos
Grafite , Praguicidas , Animais , Humanos , Hidróxidos
5.
Brain Behav Immun ; 88: 844-855, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32222525

RESUMO

5-lipoxygenase (ALOX5) is an enzyme involved in arachidonic acid (AA) metabolism, a metabolic pathway in which cysteinyl leukotrienes (CysLTs) are the resultant metabolites. Both ALOX5 and CysLTs are clinically significant in a number of inflammatory diseases, such as in asthma and allergic rhinitis, and drugs antagonizing the effect of these molecules have long been successfully used to counter these diseases. Interestingly, recent advances in 'neuroinflammation' research has led to the discovery of several novel inflammatory pathways regulating many cerebral pathologies, including the ALOX5 pathway. By means of pharmacological and genetic studies, both ALOX5 and CysLTs receptors have been shown to be involved in the pathogenesis of Alzheimer's disease (AD) and other neurodegenerative/neurological diseases, such as in Parkinson's disease, multiple sclerosis, and epilepsy. In both transgenic and sporadic models of AD, it has been shown that the levels of ALOX5/CysLTs are elevated, and that genetic/pharmacological interventions of these molecules can alleviate AD-related behavioral and pathological conditions. Clinical relevance of these molecules has also been found in AD brain samples. In this review, we aim to summarize such important findings on the role of ALOX5/CysLTs in AD pathophysiology, from both the cellular and the molecular aspects, and also discuss the potential of their blockers as possible therapeutic choices to curb AD-related conditions.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Araquidonato 5-Lipoxigenase/metabolismo , Asma , Humanos , Leucotrienos/metabolismo , Metabolismo dos Lipídeos
6.
J Ind Microbiol Biotechnol ; 47(2): 209-222, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31853777

RESUMO

A highly efficient lycopene production system was constructed by assembling enzymes fused to zinc-finger motifs on DNA scaffolds in vitro and in vivo. Three key enzymes of the lycopene synthesis pathway, geranylgeranyl diphosphate synthase, phytoene synthase, and phytoene desaturase, were fused with zinc-finger proteins, expressed and purified. Recombinant plasmids of the pS series containing DNA scaffolds that the zinc-finger proteins can specifically bind to were constructed. In the in vitro system, the production efficiency of lycopene was improved greatly after the addition of the scaffold plasmid pS231. Subsequently, the plasmid pET-AEBI was constructed and introduced into recombinant Escherichia coli BL21 (DE3) for expression, together with plasmids of the pS series. The lycopene production rate and content of the recombinant strain pp231 were higher than that of all strains carrying the DNA scaffold and the control. With the addition of cofactors and substrates in the lycopene biosynthesis pathway, the lycopene yield of pp231 reached 632.49 mg/L at 40 h, representing a 4.7-fold increase compared to the original recombinant strain pA1A3. This DNA scaffold system can be used as a platform for the construction and production of many biochemicals synthesized via multi-enzyme cascade reactions.


Assuntos
DNA/genética , Licopeno/metabolismo , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oxirredutases/metabolismo , Plasmídeos/genética , Dedos de Zinco
7.
J Asian Nat Prod Res ; 22(9): 864-878, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31347387

RESUMO

This study aimed to evaluate whether mogrol, a main bioactive ingredient of Siraitia grosvenorii, could attenuate LPS-induced memory impairment in mice. The behavioral tests and immunohistochemical analysis and Western blot were performed. The present results showed that oral administration of mogrol (20, 40, 80 mg/kg) significantly improved LPS-induced memory impairment in mice. The results also indicated that mogrol treatment significantly reduced the number of Iba1-positive cells, the nuclear NF-κB p65 and levels of TNF-α, IL-1ß and IL-6 both in the hippocampus and frontal cortex of LPS-challenged mice. [Formula: see text].


Assuntos
Inflamação , Lipopolissacarídeos , Animais , Hipocampo , Camundongos , Estrutura Molecular , NF-kappa B , Fator de Necrose Tumoral alfa
8.
Int J Neuropsychopharmacol ; 22(6): 372-382, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31038173

RESUMO

BACKGROUND: Although depression is the leading cause of disability worldwide, its pathophysiology is poorly understood. Our previous study showed that hippocampal peroxisome proliferator-activated receptor δ (PPARδ) overexpression displays antidepressive effect and enhances hippocampal neurogenesis during chronic stress. Herein, we further extended our curiosity to investigate whether downregulating PPARδ could cause depressive-like behaviors through downregulation of neurogenesis. METHODS: Stereotaxic injection of lentiviral vector, expressing short hairpin RNA complementary to the coding exon of PPARδ, was done into the bilateral dentate gyri of the hippocampus, and the depression-like behaviors were observed in mice. Additionally, hippocampal neurogenesis, brain-derived neurotrophic factor and cAMP response element-binding protein were measured both in vivo and in vitro. RESULTS: Hippocampal PPARδ knockdown caused depressive-like behaviors and significantly decreased neurogenesis, neuronal differentiation, levels of mature brain-derived neurotrophic factor and phosphorylated cAMP response element-binding protein in the hippocampus. In vitro study further confirmed that PPARδ knockdown could inhibit proliferation and differentiation of neural stem cells. Furthermore, these effects were mimicked by repeated systemic administration of a PPARδ antagonist, GSK0660 (1 or 3 mg/kg i.p. for 21 d). CONCLUSIONS: These findings suggest that downregulation of hippocampal PPARδ is associated with depressive behaviors in mice through an inhibitory effect on cAMP response element-binding protein/brain-derived neurotrophic factor-mediated adult neurogenesis in the hippocampus, providing new insights into the pathogenesis of depression.


Assuntos
Comportamento Animal/fisiologia , Giro Denteado/metabolismo , Depressão/fisiopatologia , Neurogênese/efeitos dos fármacos , PPAR delta/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação a CREB/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Depressão/induzido quimicamente , Regulação para Baixo/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , PPAR delta/genética , RNA Interferente Pequeno/farmacologia , Sulfonas/farmacologia , Tiofenos/farmacologia
9.
Brain Behav Immun ; 73: 533-545, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29935310

RESUMO

Increasing evidence demonstrates that the neurotoxicity of amyloid-beta (Aß) deposition plays a causative role in Alzheimer's disease (AD). Herein, we evaluated the neuroprotective effects of 6α-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777), a specific G-protein coupled bile acid receptor 1 (TGR5) agonist, in the Aß1-42-treated mouse model of acute neurotoxicity. Single intracerebroventricular (i.c.v.) injection of aggregated Aß1-42 (410 pmol/mouse; 5 µl) into the mouse brain induced cognitive impairment, neuroinflammation, apoptosis, and synaptic dysfunction. In contrast, INT-777 (1.5 or 3.0 µg/mouse, i.c.v.) significantly improved Aß1-42-induced cognitive impairment, as reflected by better performance in memory tests. Importantly, INT-777 treatment reversed Aß1-42-induced TGR5 down-regulation, suppressed the increase of nuclear NF-κB p65, and mitigated neuroinflammation, as evidenced by lower proinflammatory cytokines and less Iba1-positive cells in the hippocampus and frontal cortex. INT-777 treatment also pronouncedly suppressed apoptosis through the reduction of TUNEL-positive cells, decreased caspase-3 activation, increased the ratio of Bcl-2/Bax, and ameliorated synaptic dysfunction by promoting dendritic spine generation with the upregulation of postsynaptic and presynaptic proteins (PSD95 and synaptophysin) in Aß1-42-treated mice. Our results indicate that INT-777 has potent neuroprotective effects against Aß1-42-induced neurotoxicity. Taken together, these findings suggest that the activation of TGR5 could be a novel and promising strategy for the treatment of AD.


Assuntos
Ácidos Cólicos/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/efeitos adversos , Peptídeos beta-Amiloides/metabolismo , Animais , Apoptose/efeitos dos fármacos , Encéfalo/metabolismo , Caspase 3/metabolismo , Ácidos Cólicos/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Neuroimunomodulação/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/efeitos adversos , Fragmentos de Peptídeos/metabolismo
10.
Horm Behav ; 105: 95-103, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096284

RESUMO

Estrogen receptors (ERs) are thought to be associated with the onset and progression of neurodegenerative injuries and diseases, but the relationship and mechanisms underlying between ERs and cognition in type 1 diabetes remain elusive. In the current study, we investigated the effects of ERα and ERß on the memory impairment and apoptosis in streptozotocin-induced diabetic mice. We found that ERα and/or ERß activation using their agonists (0.5 mg/kg E2, PPT or DPN) ameliorate memory impairment in the Morris water maze (MWM) and Y-maze tests and suppress apoptosis as evidenced by decreased caspase-3 activity and increased ratio of Bcl-2/Bax. Importantly, treatment with the pharmacologic ERs agonists caused significant increases in the membrane ERα and ERß expression and subsequent PI3K/Akt, CREB and BDNF activation in the hippocampus of diabetic mice. Our data indicate that ERα and ERß are involved in the cognitive impairment of type 1 diabetes and that activation of ERs via administration of ERs agonists could be a novel and promising strategy for the treatment of diabetic cognitive impairment.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Disfunção Cognitiva/etiologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/psicologia , Estradiol/farmacologia , Estradiol/uso terapêutico , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/metabolismo , Feminino , Hipocampo/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Fármacos Neuroprotetores/farmacologia , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Ovariectomia , Fenóis/farmacologia , Fenóis/uso terapêutico , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Estreptozocina
11.
Brain Behav Immun ; 60: 255-269, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27810377

RESUMO

Previously we reported that cysteinyl leukotrienes (Cys-LTs) and the type 1 receptor for Cys-LTs (CysLT1R) are related to amyloid ß (Aß)-induced neurotoxicity. The aim of the current study was to find out the role of CysLT1R on lipopolysaccharide (LPS)-induced cognitive deficit and neurotoxicity. shRNA-mediated knockdown or pharmacological blockade (by pranlukast) of CysLT1R were performed in ICR mice for 21days prior to systemic infusion of LPS. From day 22, LPS was administered for 7days and then a set of behavioral, histopathological and biochemical tests were employed to test memory, neuroinflammation and apoptotic responses in the mouse hippocampus. LPS (only)-treated mice showed poor performance in both Morris water maze (MWM) and Y-maze tests. However, shRNA-mediated knockdown or pranlukast-treated blockade of CysLT1R improved performance of the mice in these tests. To find out the possible underlying mechanisms, we assessed several parameters such as microglial activation (by immunohistochemistry), level of CysLT1R (by WB and qRT-PCR) and the inflammatory/apoptotic pathways (by ELISA or TUNEL or WB) in the mouse hippocampus. LPS-induced memory impairment was accompanied by activation of microglia, higher level of CysLT1R, IL-1ß, TNF-α and nuclear NF-κB p65. LPS also caused apoptosis in the hippocampus as detected by TUNEL staining, further supplemented by detection of increased Caspase-3 and a reduced Bcl-2/Bax ratio. All of these adverse changes in the mouse hippocampus were inhibited by pretreatment with CysLT1R-shRNA and pranlukast. Through this study we suggest that CysLT1R shares a strong correlation with LPS-associated memory deficit, neuroinflammation and apoptosis and CysLT1R could be a novel target for preventive measures to intervene the progression of Alzheimer's disease (AD)-like phenotypes.


Assuntos
Técnicas de Silenciamento de Genes , Lipopolissacarídeos/farmacologia , Transtornos da Memória/genética , Receptores de Leucotrienos/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Transtornos Cognitivos/genética , Transtornos Cognitivos/metabolismo , Disfunção Cognitiva/metabolismo , Técnicas de Silenciamento de Genes/métodos , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/metabolismo , Camundongos , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/metabolismo
12.
Acta Pharmacol Sin ; 38(4): 477-487, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28112182

RESUMO

Evidence suggests that neuroinflammation is involved in depression and that the cysteinyl leukotriene receptor 1 (CysLT1R) plays a potential pathophysiological role in several types of CNS disorders. Our previous study has shown that knockdown of hippocampal CysLT1R in mice prevents the depressive-like phenotype and neuroinflammation induced by chronic mild stress (CMS). Here, we examined the effects of hippocampal CysLT1R knockdown and CysLT1R blockade on LPS-induced depressive-like behavior in mice. We found that injection of LPS (0.5 mg/kg, ip) caused marked increase in hippocampal CysLT1R expression, which was reversed by pretreatment with fluoxetine (20 mg·kg-1·d-1 for 7 d, ig). Knockdown of hippocampal CysLT1R or blockade of CysLT1R by pretreatment with pranlukast (0.5 mg/kg, ip) significantly suppressed LPS-induced depressive behaviors, as evidenced by decreases in mouse immobility time in the forced swimming test (FST) and tail suspension test (TST) and latency to feed in the novelty-suppressed feeding (NSF) test. Moreover, both CysLT1R knockdown and CysLT1R blockade markedly prevented LPS-induced neuroinflammation, as shown by the suppressed activation of microglia and NF-κB signaling as well as the hippocampal levels of TNF-α and IL-1ß in mice. Our results suggest that CysLT1R may be involved in LPS-induced depressive-like behaviors and neuroinflammation, and that downregulation of CysLT1R could be a novel and potential therapeutic strategy for the treatment of depression, at least partially due to its role in neuroinflammation.


Assuntos
Depressão/tratamento farmacológico , Hipocampo/metabolismo , Lipopolissacarídeos/farmacologia , Receptores de Leucotrienos/genética , Animais , Cromonas/uso terapêutico , Depressão/metabolismo , Depressão/psicologia , Fluoxetina/uso terapêutico , Técnicas de Silenciamento de Genes , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Antagonistas de Leucotrienos/uso terapêutico , Masculino , Camundongos Endogâmicos ICR , Receptores de Leucotrienos/metabolismo , Transdução de Sinais
13.
Int J Neuropsychopharmacol ; 19(1)2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26362775

RESUMO

BACKGROUND: Emerging data have demonstrated that peroxisome proliferator-activated receptor δ (PPARδ) activation confers a potentially neuroprotective role in some neurodegenerative diseases. However, whether PPARδ is involved in depression is unknown. METHODS: In this study, PPARδ was firstly investigated in the chronic mild stress (CMS) and learned helplessness (LH) models of depression. The changes in depressive behaviors and hippocampal neurogenesis were investigated after PPARδ overexpression by microinfusion of the lentiviral vector, containing the coding sequence of mouse PPARδ (LV-PPARδ), into the bilateral dentate gyri of the hippocampus or PPARδ activation by repeated systemic administration of PPARδ agonist GW0742 (5 or 10mg/kg.d, i.p., for 21 d). RESULTS: We found that both CMS and LH resulted in a significant decrease in the PPARδ expression in the hippocampi of mice, and this change was reversed by treatment with the antidepressant fluoxetine. PPARδ overexpression and PPARδ activation each suppressed the CMS- and LH-induced depressive-like behavior and produced an antidepressive effect. In vivo or in vitro studies also showed that both overexpression and activation of PPARδ enhanced proliferation or differentiation of neural stem cells in the hippocampi of mice. CONCLUSIONS: These results suggest that hippocampal PPARδ upregulation represses stress-induced depressive behaviors, accompanied by enhancement of neurogenesis.


Assuntos
Depressão/complicações , Depressão/patologia , Hipocampo/metabolismo , Neurogênese/fisiologia , PPAR delta/metabolismo , Estresse Psicológico/complicações , Animais , Diferenciação Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Elevação dos Membros Posteriores , Masculino , Camundongos , Camundongos Endogâmicos ICR , Células-Tronco Neurais/fisiologia , PPAR delta/genética , Fosfopiruvato Hidratase/metabolismo , Sincalida/metabolismo , Tiazóis/farmacologia , Fatores de Tempo , Transdução Genética
14.
Int J Neuropsychopharmacol ; 17(4): 581-92, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24229499

RESUMO

Deposition of extracellular amyloid-ß (Aß) peptide is one of the pathological hallmarks of Alzheimer's disease (AD). Accumulation of Aß is thought to associate with cognition deficits, neuroinflammation and apoptosis observed in AD. However, effective neuroprotective approaches against Aß neurotoxicity are unavailable. In the present study, we analysed the effects of pranlukast, a selective cysteinyl leukotriene receptor 1 (CysLT1R) antagonist, on the impairment of learning and memory formation induced by Aß and the probable underlying electrophysiological and molecular mechanisms. We found that bilateral intrahippocampal injection of Aß1₋42 resulted in a significant decline of spatial learning and memory of mice in the Morris water maze (MWM) and Y-maze tests, together with a serious depression of in vivo hippocampal long-term potentiation (LTP) in the CA1 region of the mice. Importantly, this treatment caused significant increases in CysLT1R expression and subsequent NF-κB signaling, caspase-3 activation and Bcl-2 downregulation in the hippocampus or prefrontal cortex. Oral administration of pranlukast at 0.4 or 0.8 mg/kg for 4 wk significantly reversed Aß1₋42-induced impairments of cognitive function and hippocampal LTP in mice. Furthermore, pranlukast reversed Aß1₋42-induced CysLT1R upregulation, and markedly suppressed the Aß1₋42-triggered NF-κB pathway, caspase-3 activation and Bcl-2 downregulation in the hippocampus and prefrontal cortex in mice. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay confirmed its presence in the brain after oral administration of pranlukast in mice. These data disclose novel findings about the therapeutic potential of pranlukast, revealing a previously unknown therapeutic possibility to treat memory deficits associated with AD.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Cromonas/farmacologia , Transtornos Cognitivos/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Antagonistas de Leucotrienos/farmacologia , Fragmentos de Peptídeos/farmacologia , Peptídeos beta-Amiloides/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/fisiopatologia , Cromonas/administração & dosagem , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Hipocampo/fisiopatologia , Aprendizagem/efeitos dos fármacos , Antagonistas de Leucotrienos/administração & dosagem , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Memória/efeitos dos fármacos , Camundongos Endogâmicos ICR , Fragmentos de Peptídeos/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiopatologia , Receptores de Leucotrienos/efeitos dos fármacos
15.
Infect Drug Resist ; 17: 1291-1301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576824

RESUMO

Objective: Staphylococcus haemolyticus can cause a series of infections including otitis media (OM), and the oxacillin-resistant S. haemolyticus has become a serious health concern. This study aimed to investigate the genomic characteristics of two strains of oxacillin-resistant and mecA-positive S. haemolyticus isolated from the samples of ear swabs from patients with OM and explore their acquired antibiotic resistance genes (ARGs) and the mobile genetic elements (MGEs). Methods: Two oxacillin-resistant S. haemolyticus strains, isolated from ear swab samples of patients with OM, underwent antimicrobial susceptibility evaluation, followed by whole-genome sequencing. The acquired ARGs and the MGEs carried by the ARGs, harbored by the genomes of two strains of S. haemolyticus were identified. Results: The two strains of oxacillin-resistant S. haemolyticus (strain SH1275 and strain SH9361) both carried the genetic contexts of mecA with high similarity with the SCCmec type V(5C2&5) subtype c. Surprisingly, the chromosomal aminoglycoside resistance gene aac(6')-aph(2") harbored by S. haemolyticus strain SH936 was flanked by two copies of IS256, forming the IS256-element (IS256-GNAT-[aac(6')-aph(2")]-IS256), which was widely present in strains of both Staphylococcus and Enterococcus genus. Furthermore, the two strains of oxacillin-resistant and MDR S. haemolyticus were found to harbor antimicrobial resistance plasmids, including one 26.9-kb plasmid (pSH1275-2) containing msr(A)-mph(C)) and qacA, one mobilizable plasmid pSH1275-3 harboring vga(A)LC, one plasmid (pSH9361-1) carrying erm(C), and one plasmid (pSH9361-2) carrying qacJ. Conclusion: The systematic analysis of whole-genome sequences provided insights into the mobile genetic elements responsible for multi-drug resistance in these two strains of oxacillin-resistant and mecA-positive S. haemolyticus, which will assist clinicians in devising precise, personalized, and clinical therapeutic strategies for treating otitis media caused by multi-drug resistant S. haemolyticus.

16.
Neuron ; 112(11): 1795-1814.e10, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38518778

RESUMO

Although bile acids play a notable role in depression, the pathological significance of the bile acid TGR5 membrane-type receptor in this disorder remains elusive. Using depression models of chronic social defeat stress and chronic restraint stress in male mice, we found that TGR5 in the lateral hypothalamic area (LHA) predominantly decreased in GABAergic neurons, the excitability of which increased in depressive-like mice. Upregulation of TGR5 or inhibition of GABAergic excitability in LHA markedly alleviated depressive-like behavior, whereas down-regulation of TGR5 or enhancement of GABAergic excitability facilitated stress-induced depressive-like behavior. TGR5 also bidirectionally regulated excitability of LHA GABAergic neurons via extracellular regulated protein kinases-dependent Kv4.2 channels. Notably, LHA GABAergic neurons specifically innervated dorsal CA3 (dCA3) CaMKIIα neurons for mediation of depressive-like behavior. LHA GABAergic TGR5 exerted antidepressant-like effects by disinhibiting dCA3 CaMKIIα neurons projecting to the dorsolateral septum (DLS). These findings advance our understanding of TGR5 and the LHAGABA→dCA3CaMKIIα→DLSGABA circuit for the development of potential therapeutic strategies in depression.


Assuntos
Depressão , Neurônios GABAérgicos , Região Hipotalâmica Lateral , Receptores Acoplados a Proteínas G , Animais , Masculino , Camundongos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Depressão/metabolismo , Modelos Animais de Doenças , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Região Hipotalâmica Lateral/metabolismo , Camundongos Endogâmicos C57BL , Vias Neurais/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Núcleos Septais/metabolismo , Derrota Social , Estresse Psicológico/metabolismo
17.
J Int Adv Otol ; 19(3): 212-216, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37272638

RESUMO

BACKGROUND: This study aimed to examine the roles of miR-10a-5p and phosphatidylinositol-4,5-bisphosphonate 3-kinase catalytic subunit α in the pathogenesis of middle ear cholesteatoma. METHODS: We enrolled 27 patients with middle ear cholesteatoma and collected samples of intraoperative cholesteatoma and normal posterior ear skin tissues. The mRNA expression levels of miR-10a-5p and PIK3CA were detected using real-time quantitative polymerase chain reaction. PIK3CA protein expression was measured by immunohistochemistry and western blotting. RESULTS: Middle ear cholesteatoma tissues showed significantly lower miR-10a-5p expression levels and significantly higher PIK3CA expression levels than normal posterior ear skin tissues (both P < .05). Furthermore, the miR-10a-5p and PIK3CA expression levels were significantly negatively correlated in middle ear cholesteatoma tissues (r = -0.926, P < .001). CONCLUSION: Low miR-10a-5p expression levels in middle ear cholesteatoma tissues may inhibit the growth and proliferation of cholesteatoma, whereas high PIK3CA expression level may promote its growth and proliferation. In addition, miR-10a-5p may affect the proliferation and differentiation of cholesteatoma by negatively regulating its target gene, PIK3CA.


Assuntos
Colesteatoma da Orelha Média , MicroRNAs , Humanos , MicroRNAs/genética , Colesteatoma da Orelha Média/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células/genética
18.
Neurochem Int ; 165: 105510, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893915

RESUMO

Clinical and experimental studies have shown that the sharp reduction of estrogen is one of the important reasons for the high incidence of Alzheimer's disease (AD) in elderly women, but there is currently no such drug for treatment of AD. Our group first designed and synthesized a novel compound R-9-(4fluorophenyl)-3-methyl-10,10,-Hydrogen-6-hydrogen-benzopyran named FMDB. In this study, our aim is to investigate the neuroprotective effects and mechanism of FMDB in APP/PS1 transgenic mice. 6 months old APP/PS1 transgenic mice were intragastrical administered with FMDB (1.25, 2.5 and 5 mg/kg) every other day for 8 weeks. LV-ERß-shRNA was injected bilaterally into the hippocampus of APP/PS1 mice to knockdown estrogen receptor ß (ERß). We found that FMDB ameliorated cognitive impairment in the Morris water maze and novel object recognition tests, increased hippocampal neurogenesis and prevented hippocampal apoptotic responses in APP/PS1 mice. Importantly, FMDB activated nuclear ERß mediated CBP/p300, CREB and brain-derived neurotrophic factor (BDNF) signaling, and membrane ERß mediated PI3K/Akt, CREB and BDNF signaling in the hippocampus. Our study demonstrated the contributions and mechanism of FMDB to cognition, neurogenesis and apoptosis in APP/PS1 mice. These lay the experimental foundation for the development of new anti-AD drugs.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Camundongos , Animais , Feminino , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Camundongos Transgênicos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fosfatidilinositol 3-Quinases , Receptor beta de Estrogênio , Cognição , Hipocampo/metabolismo , Modelos Animais de Doenças , Neurogênese , Apoptose , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/genética
19.
Am J Rhinol Allergy ; 36(1): 99-105, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34236254

RESUMO

BACKGROUND: The role of basophils in allergic rhinitis (AR) has been studied extensively; however, there are very few reports on changes in basophils after allergen-specific immunotherapy (SIT). OBJECTIVE: To examine the changes and correlation of peripheral blood basophils and the therapeutic effect in patients with AR during allergen-SIT. METHODS: A total of 77 patients with AR who were allergic only to house dust mites received allergen-SIT. At 3 time points, patients underwent testing for the percentage and activation rate of basophils in peripheral blood, skin index (SI) measurement, visual analog scale (VAS) assessment, and rhinoconjunctivitis quality of life questionnaire (RQLQ) evaluation. The results were compared to a control group with congenital preauricular fistula. RESULTS: (1) Before treatment, the percentage and activation rate of basophils in patients with AR were significantly higher than those in controls. There was no significant difference in the percentages and activation rates of basophils at the 3 time points. (2) The SIs, VAS, and RQLQ scores of the patients immediately after treatment and 2 years posttreatment decreased significantly compared to those before treatment; the SI, VAS, and RQLQ scores of the patients 2 years posttreatment increased significantly compared with those immediately after treatment. (3) There was no correlation between the patients' basophil activation rate and percentage and the SI, VAS, and RQLQ scores at all time points. CONCLUSION: The percentage and activation rate of basophils were higher in patients with AR than in controls. The values did not change significantly after allergen-SIT and showed no correlation with treatment effectiveness. Therefore, the frequency and activation rate of basophils cannot be used as criteria for assessing the effectiveness of allergen-SIT for house dust mites. Allergen-SIT is effective for the management of AR, but the effect declines after the completion of therapy.


Assuntos
Basófilos , Rinite Alérgica , Alérgenos , Dessensibilização Imunológica , Humanos , Qualidade de Vida , Rinite Alérgica/terapia
20.
Oxid Med Cell Longev ; 2022: 3716609, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464765

RESUMO

Takeda G protein-coupled receptor 5 (TGR5) is the first known G protein-coupled receptor specific for bile acids and is recognized as a new and critical target for type 2 diabetes and metabolic syndrome. It is expressed in many brain regions associated with memory such as the hippocampus and frontal cortex. Here, we hypothesize that activation of TGR5 may ameliorate streptozotocin- (STZ-) induced cognitive impairment. The mouse model of cognitive impairment was established by a single intracerebroventricular (ICV) injection of STZ (3.0 mg/kg), and we found that TGR5 activation by its agonist INT-777 (1.5 or 3.0 µg/mouse, ICV injection) ameliorated spatial memory impairment in the Morris water maze and Y-maze tests. Importantly, INT-777 reversed STZ-induced downregulation of TGR5 and glucose usage deficits. Our results further showed that INT-777 suppressed neuronal apoptosis and improved neurogenesis which were involved in tau phosphorylation and CREB-BDNF signaling. Moreover, INT-777 increased action potential firing of excitatory pyramidal neurons in the hippocampal CA3 and medial prefrontal cortex of ICV-STZ groups. Taken together, these findings reveal that activation of TGR5 has a neuroprotective effect against STZ-induced cognitive impairment by modulating apoptosis, neurogenesis, and neuronal firing in the brain and TGR5 might be a novel and potential target for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Doença de Alzheimer/metabolismo , Animais , Apoptose , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Aprendizagem em Labirinto , Camundongos , Neurogênese , Receptores Acoplados a Proteínas G/metabolismo , Estreptozocina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA