Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Metabolism ; 158: 155972, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38972476

RESUMO

Sarcopenia is one of the most common skeletal muscle disorders and is characterized by infirmity and disability. While extensive research has focused on elucidating the mechanisms underlying the progression of sarcopenia, further comprehensive insights into its pathogenesis are necessary to identify new preventive and therapeutic approaches. The involvement of inflammasomes in sarcopenia is widely recognized, with particular emphasis on the NLRP3 (NLR family pyrin domain containing 3) inflammasome. In this review, we aim to elucidate the underlying mechanisms of the NLRP3 inflammasome and its relevance in sarcopenia of various etiologies. Furthermore, we highlight interventions targeting the NLRP3 inflammasome in the context of sarcopenia and discuss the current limitations of our knowledge in this area.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sarcopenia , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Sarcopenia/metabolismo , Sarcopenia/terapia , Inflamassomos/metabolismo , Inflamassomos/fisiologia , Animais , Músculo Esquelético/metabolismo
2.
Front Endocrinol (Lausanne) ; 14: 1162485, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284220

RESUMO

Introduction: Recent reports indicate that mitochondrial quality decreases during non-alcoholic fatty liver disease (NAFLD) progression, and targeting the mitochondria may be a possible treatment for NAFLD. Exercise can effectively slow NAFLD progression or treat NAFLD. However, the effect of exercise on mitochondrial quality in NAFLD has not yet been established. Methods: In the present study, we fed zebrafish a high-fat diet to model NAFLD, and subjected the zebrafish to swimming exercise. Results: After 12 weeks, swimming exercise significantly reduced high-fat diet-induced liver injury, and reduced inflammation and fibrosis markers. Swimming exercise improved mitochondrial morphology and dynamics, inducing upregulation of optic atrophy 1(OPA1), dynamin related protein 1 (DRP1), and mitofusin 2 (MFN2) protein expression. Swimming exercise also activated mitochondrial biogenesis via the sirtuin 1 (SIRT1)/ AMP-activated protein kinase (AMPK)/ PPARgamma coactivator 1 alpha (PGC1α) pathway, and improved the mRNA expression of genes related to mitochondrial fatty acid oxidation and oxidative phosphorylation. Furthermore, we find that mitophagy was suppressed in NAFLD zebrafish liver with the decreased numbers of mitophagosomes, the inhibition of PTEN-induced kinase 1 (PINK1) - parkin RBR E3 ubiquitin protein ligase (PARKIN) pathway and upregulation of sequestosome 1 (P62) expression. Notably, swimming exercise partially recovered number of mitophagosomes, which was associated with upregulated PARKIN expression and decreased p62 expression. Discussion: These results demonstrate that swimming exercise could alleviate the effects of NAFLD on the mitochondria, suggesting that exercise may be beneficial for treating NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Peixe-Zebra/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases , Terapia por Exercício
3.
Comput Math Methods Med ; 2022: 1747822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756404

RESUMO

In order to further improve the detection performance of the wearable heart rate sensor for human physiological and biochemical signals and body kinematics performance, the wearable heart rate sensor module was optimized by using nanofibers. Nanoparticle-doped graphene films were prepared by adding nanoparticles to a graphene oxide solution. The prepared film was placed in toluene, and the nanoparticles were removed to complete the preparation of a graphene film with a porous microstructure. The graphene film and the conductive film together formed a wearable heart rate sensor module. The strain response test of the porous graphene film wearable heart rate sensor module verifies the validity of the research in this paper. The resistance change of the wearable heart rate sensor module based on the PGF-2 film is 8 to 16 times higher than that of the RGO film, and the sensitivity is better, proving that the sensor module designed by this method shows significant application potential in human motion detection.


Assuntos
Grafite , Nanofibras , Dispositivos Eletrônicos Vestíveis , Grafite/química , Frequência Cardíaca , Humanos , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA