RESUMO
BACKGROUND: The senescence marker p16INK4a, which constitutes part of the genome 9p21.3 cardiovascular disease (CVD) risk allele, is believed to play a role in foam cells formation. This study aims to unravel the role of p16INK4a in mediating macrophage foam cells formation, cellular senescence, and autophagy lysosomal functions. METHODS: The mammalian expression plasmid pCMV-p16INK4a was used to induce p16INK4a overexpression in THP-1 macrophages. Next, wild-type and p16INK4a-overexpressed macrophages were incubated with oxidized LDL to induce foam cells formation. Lipids accumulation was evaluated using Oil-red-O staining and cholesterol efflux assay, as well as expression of scavenger receptors CD36 and LOX-1. Cellular senescence in macrophage foam cells were determined through analysis of senescence-associated ß-galactosidase activity and other SASP factors expression. Meanwhile, autophagy induction was assessed through detection of autophagosome formation and LC3B/p62 markers expression. RESULTS: The findings showed that p16INK4a enhanced foam cells formation with increased scavenger receptors CD36 and LOX-1 expression and reduced cholesterol efflux in THP-1 macrophages. Besides, ß-galactosidase activity was enhanced, and SASP factors such as IL-1α, TNF-α, and MMP9 were up-regulated. In addition, p16INK4a is also shown to induce autophagy, as well as increasing autophagy markers LC3B and p62 expression. CONCLUSIONS: This study provides insights on p16INK4a in mediating macrophages foam cells formation, cellular senescence, and foam cells formation.
Assuntos
Autofagia , Antígenos CD36 , Senescência Celular , Inibidor p16 de Quinase Dependente de Ciclina , Células Espumosas , Lipoproteínas LDL , Humanos , Células Espumosas/metabolismo , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Autofagia/genética , Células THP-1 , Antígenos CD36/metabolismo , Antígenos CD36/genética , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Colesterol/metabolismo , Biomarcadores/metabolismo , Receptores Depuradores Classe E/metabolismo , Receptores Depuradores Classe E/genéticaRESUMO
Atherosclerosis is one of the main underlying causes of cardiovascular diseases (CVD). It is associated with chronic inflammation and intimal thickening as well as the involvement of multiple cell types including immune cells. The engagement of innate or adaptive immune response has either athero-protective or atherogenic properties in exacerbating or alleviating atherosclerosis. In atherosclerosis, the mechanism of action of immune cells, particularly monocytes, macrophages, dendritic cells, and B- and T-lymphocytes have been discussed. Immuno-senescence is associated with aging, viral infections, genetic predispositions, and hyperlipidemia, which contribute to atherosclerosis. Immune senescent cells secrete SASP that delays or accelerates atherosclerosis plaque growth and associated pathologies such as aneurysms and coronary artery disease. Senescent cells undergo cell cycle arrest, morphological changes, and phenotypic changes in terms of their abundances and secretome profile including cytokines, chemokines, matrix metalloproteases (MMPs) and Toll-like receptors (TLRs) expressions. The senescence markers are used in therapeutics and currently, senolytics represent one of the emerging treatments where specific targets and clearance of senescent cells are being considered as therapy targets for the prevention or treatment of atherosclerosis.
Assuntos
Aterosclerose , Senescência Celular , Humanos , Senescência Celular/genética , Envelhecimento/metabolismo , Citocinas/metabolismo , Inflamação/patologiaRESUMO
Sunlight is an important factor in regulating the central circadian rhythm, including the modulation of our sleep/wake cycles. Sunlight had also been discovered to have a prominent influence on our skin's circadian rhythm. Overexposure or prolonged exposure to the sun can cause skin photodamage, such as the formation of irregular pigmentation, collagen degradation, DNA damage, and even skin cancer. Hence, this review will be looking into the detrimental effects of sunlight on our skin, not only at the aspect of photoaging but also at its impact on the skin's circadian rhythm. The growing market trend of natural-product-based cosmeceuticals as also caused us to question their potential to modulate the skin's circadian rhythm. Questions about how the skin's circadian rhythm could counteract photodamage and how best to maximize its biopotential will be discussed in this article. These discoveries regarding the skin's circadian rhythm have opened up a completely new level of understanding of our skin's molecular mechanism and may very well aid cosmeceutical companies, in the near future, to develop better products that not only suppress photoaging but remain effective and relevant throughout the day.
Assuntos
Cosmecêuticos , Envelhecimento da Pele , Dermatopatias , Ritmo Circadiano/fisiologia , Cosmecêuticos/metabolismo , Humanos , Pele/metabolismo , Dermatopatias/metabolismoRESUMO
Atherosclerosis represents one of the major causes of death globally. The high mortality rates and limitations of current therapeutic modalities have urged researchers to explore potential alternative therapies. The clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) system is commonly deployed for investigating the genetic aspects of Atherosclerosis. Besides, advances in CRISPR/Cas system has led to extensive options for researchers to study the pathogenesis of this disease. The recent discovery of Cas9 variants, such as dCas9, Cas9n, and xCas9 have been established for various applications, including single base editing, regulation of gene expression, live-cell imaging, epigenetic modification, and genome landscaping. Meanwhile, other Cas proteins, such as Cas12 and Cas13, are gaining popularity for their applications in nucleic acid detection and single-base DNA/RNA modifications. To date, many studies have utilized the CRISPR/Cas9 system to generate disease models of atherosclerosis and identify potential molecular targets that are associated with atherosclerosis. These studies provided proof-of-concept evidence which have established the feasibility of implementing the CRISPR/Cas system in correcting disease-causing alleles. The CRISPR/Cas system holds great potential to be developed as a targeted treatment for patients who are suffering from atherosclerosis. This review highlights the advances in CRISPR/Cas systems and their applications in establishing pathogenetic and therapeutic role of specific genes in atherosclerosis.
Assuntos
Aterosclerose/genética , Sistemas CRISPR-Cas/genética , Animais , DNA/genética , Epigênese Genética/genética , Edição de Genes/métodos , Expressão Gênica/genética , Genoma/genética , Humanos , RNA/genética , RNA Guia de Cinetoplastídeos/genéticaRESUMO
BACKGROUND: The incidence of neurological complications and fatalities associated with Hand, Foot & Mouth disease has increased over recent years, due to emergence of newly-evolved strains of Enterovirus 71 (EV71). In the search for new antiviral therapeutics against EV71, accurate and sensitive in vitro cellular models for preliminary studies of EV71 pathogenesis is an essential prerequisite, before progressing to expensive and time-consuming live animal studies and clinical trials. METHODS: This study thus investigated whether neural lineages derived from pluripotent human embryonic stem cells (hESC) can fulfil this purpose. EV71 infection of hESC-derived neural stem cells (NSC) and mature neurons (MN) was carried out in vitro, in comparison with RD and SH-SY5Y cell lines. RESULTS: Upon assessment of post-infection survivability and EV71 production by the various types, it was observed that NSC were significantly more susceptible to EV71 infection compared to MN, RD (rhabdomyosarcoma) and SH-SY5Y cells, which was consistent with previous studies on mice. The SP81 peptide had significantly greater inhibitory effect on EV71 production by NSC and MN compared to the cancer-derived RD and SH-SY5Y cell lines. CONCLUSIONS: Hence, this study demonstrates that hESC-derived neural lineages can be utilized as in vitro models for studying EV71 pathogenesis and for screening of antiviral therapeutics.
Assuntos
Linhagem da Célula , Enterovirus Humano A/fisiologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/virologia , Neurônios/citologia , Neurônios/virologia , Animais , Biomarcadores , Diferenciação Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Enterovirus Humano A/efeitos dos fármacos , Expressão Gênica , Humanos , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Peptídeos/farmacologia , Replicação Viral/efeitos dos fármacosRESUMO
Tumor angiogenesis and metastasis are the major causes for high morbidity and mortality rates in cancer patient. Modulation on tumor angiogenesis and metastasis provides opportunities to halt progression of cancer. From our previous findings, Phyllanthus plant possesses antiproliferative effects on melanoma and prostate cancer cell lines and induction of apoptosis. The main aims of the present work were further investigated on the antimetastatic and antiangiogenic effects on cancer cells (MeWo and PC-3) and human umbilical vein endothelial cells (HUVECs) of 4 Phyllanthus species (P.amarus, P.niruri, P.urinaria and P.watsonii). Phyllanthus extracts significantly inhibited cell adhesion, migration, invasion, and transendothelial migration activities of cancer (MeWo and PC-3) cells in a dose-dependent manner (P < 0.05) by cell-matrix adhesion, Transwell migration, invasion, and transendothelial migration assays. Phyllanthus extracts were exhibited low cytotoxicity on HUVECs up to a concentration of 500.0 µg/ml by MTS reduction assay. Phyllanthus extracts also exhibited antiangiogenic effects through inhibition of migration, invasion, and microcapillary like-tube structure formation in HUVECs. These observations were due to alteration in activities of matrix metalloproteinase (MMP) -2, -7, -9, and -26 in treated-endothelial and cancer cells by zymographies. These findings suggest that Phyllanthus plant has the potential to inhibit tumour metastasis and angiogenesis through the suppression of MMP enzymes.
Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Inibidores de Metaloproteinases de Matriz/farmacologia , Phyllanthus/química , Extratos Vegetais/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Humanos , Masculino , Metaloproteinases da Matriz/metabolismo , Invasividade Neoplásica/prevenção & controleRESUMO
BACKGROUND: Melanoma is the most fatal form of skin cancer. Different signalling pathways and proteins will be differentially expressed to pace with the tumour growth. Thus, these signalling molecules and proteins are become potential targets to halt the progression of cancer. The present works were attempted to investigate the underlying molecular mechanisms of anticancer effects of Phyllanthus (P.amarus, P.niruri, P.urinaria and P.watsonii) on skin melanoma, MeWo cells. METHODS: The ten cancer-related pathways reporter array was performed by transfection of plasmid construct of transcription factor-responsive reporter of each pathway in MeWo cells. The affected pathways in MeWo cells after treatment of Phyllanthus extracts were determined using luciferase assay. Western blot, 2D gel electrophoresis and mass spectrometry analysis were performed to identity and confirm the affected proteins and signalling molecules in treated cells. RESULTS: The ten-pathway reporter array revealed five different cancer-related signalling pathways were altered by Phyllanthus species in MeWo cells; NFκB, Myc/Max, Hypoxia, MAPK/ERK and MAPK/JNK (p<0.05). Western blot revealed that their intracellular signalling molecules including pan-Ras, c-Raf, RSK, phospho-Elk1, c-myc, Akt, HIF-1α, Bcl-2, and VEGF were down-regulated with concurrent of up-regulation; Bax, phospho-JNK-1/2 and phospho-GSK3ß, in MeWo cells upon Phyllanthus treatment (p<0.05). Proteomics-based approach was performed and MS/MS results revealed that 52 differential expressed proteins were identified (p<0.05) and involved in tumour growth, metastasis, apoptosis, glycogenesis and glycolysis, angiogenesis, protein synthesis and energy metabolism. CONCLUSION: This study provides insight into the regulation on multiple survival signalling pathways by Phyllanthus in melanoma and might be a therapeutic target for cancer treatment.
Assuntos
Genes myc/genética , Melanoma/patologia , Extratos Vegetais/administração & dosagem , Transdução de Sinais/genética , Neoplasias Cutâneas/patologia , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Quinases de Proteína Quinase Ativadas por Mitógeno , NF-kappa B/genética , Metástase Neoplásica , Neovascularização Patológica/tratamento farmacológico , Phyllanthus/química , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genéticaRESUMO
Breast cancer is known as the most common type of cancer found in women and a leading cause of cancer death in women, with the global incidence only increasing. Breast cancer in Malaysia is also unfortunately the most prevalent in Malaysian women. Many treatment options are available for breast cancer, but there is increasing resistance developed against treatment and increased recurrence risk, emphasizing the need for new treatment options. This review will focus on the applications of phage display screening in the context of breast cancer. Phage display screening can facilitate the drug discovery process by providing rapid screening and isolation of peptides that bind to targets of interest with high specificity. Peptides derived from phage display target various types of proteins involved in breast cancer, including HER2, C5AR1, p53 and PRDM14, either for therapeutic or diagnostic purposes. Different approaches were employed as well to produce potential peptides using radiolabelling and conjugation techniques. Promising results were reported for in vitro and in vivo studies utilizing peptides derived from phage display screening. Further optimization of the protocols and factors to consider are required to mitigate the challenges involved with phage display screening of peptides for breast cancer diagnosis and treatment.
Assuntos
Neoplasias da Mama , Biblioteca de Peptídeos , Peptídeos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Humanos , Feminino , Peptídeos/química , Descoberta de Drogas/métodos , Animais , Técnicas de Visualização da Superfície CelularRESUMO
BACKGROUND: The absence of commercialized vaccines and antiviral agents against dengue has made the disease a major health concern around the world. With the current dengue virus transmission rate and incidences, the development of antiviral drugs is of vital need. The aim of this project was to evaluate the possibility of developing a local medicinal plant, Phyllanthus as an anti-dengue agent. METHODS: Cocktail (aqueous and methanolic) extracts were prepared from four species of Phyllanthus (P.amarus, P.niruri, P.urinaria, and P.watsonii) and their polyphenolic compounds were identified via HPLC and LC-MS/MS analysis. MTS assay was then carried out to determine the maximal non-toxic dose (MNTD) of the extracts, followed by screening of the in vitro antiviral activity of aqueous cocktail extracts against DENV2 by means of time-of-addition (pre-, simultaneous and post-) using RT-qPCR. The differentially expressed proteins in the treated and infected cells were analysed with two dimensional gel electrophoresis experiments. RESULTS: Several active compounds including gallic acid, geraniin, syringin, and corilagen have been identified. The MNTD of both aqueous and methanolic extracts on Vero cells were 250.0 µg/ml and 15.63 µg/ml respectively. Phyllanthus showed strongest inhibitory activity against DENV2 with more than 90% of virus reduction in simultaneous treatment. Two-dimensional analysis revealed significantly altered levels of thirteen proteins, which were successfully identified by tandem MS (MS/MS). These altered proteins were involved in several biological processes, including viral entry, viral transcription and translation regulations, cytoskeletal assembly, and cellular metabolisms. CONCLUSIONS: Phyllanthus could be potentially developed as an anti-DENV agent.
Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Dengue/virologia , Phyllanthus/química , Extratos Vegetais/farmacologia , Animais , Chlorocebus aethiops , Ácido Gálico/farmacologia , Glucosídeos/farmacologia , Humanos , Taninos Hidrolisáveis/farmacologia , Fenilpropionatos/farmacologia , Plantas Medicinais , Espectrometria de Massas em Tandem , Células VeroRESUMO
Objectives: In this study, we implemented a structure-based virtual screening protocol in search of natural bioactive compounds in Clitoria ternatea that could inhibit the viral Mpro. Methods: A library of twelve main bioactive compounds in C. ternatea was created from PubChem database by minimizing ligand structure in PyRx software to increase the ligand flexibility. Molecular docking studies were performed by targeting Mpro (PDB ID: 6lu7) via Discovery Studio Visualiser and PyRx platforms. Top hits compounds were then selected to study their Adsorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug likeness properties through pkCSM pharmacokinetics tool to understand the stability, interaction, conformational changes, and pharmaceutical relevant parameters. Results: This investigation found that, in the molecular docking simulation, four bioactive compounds (procyanidin A2 [-9.3 kcal/mol], quercetin-3-rutinoside [-8.9 kcal/mol], delphinidin-3-O-glucoside [-8.3 kcal/mol], and ellagic acid [-7.4 kcal/mol]) showed producing the strongest binding affinity to the Mpro of severe acute respiratory syndrome coronavirus 2, as compared to positive control (N3 inhibitor) (-7.5 kcal/mol). These binding energies were found to be favorable for an efficient docking and resultant. In addition, the stability of quercetin-3-rutinoside and ellagic acid is higher without any unfavorable bond. The ADMET and drug likeness of these two compounds were found that they are considered an effective and safe coronavirus disease 2019 (COVID-19) inhibitors through Lipinski's Rule, absorption, distribution, metabolism, and toxicity properties. Conclusion: From these results, it was concluded that C. ternatea possess potential therapeutic properties against COVID-19.
RESUMO
This study presents an evaluation of integrating virtual laboratory simulations in assessment design of a biotechnology course at Taylor's University in Malaysia before, during and post-COVID recovery phases. The purpose was to investigate how virtual laboratory simulations were integrated as part of the assessments of a practical-embedded course-the aim being to evaluate students' acceptance and perception of using virtual simulation. A total of 46 students, across three different study cohorts (August 2019, March 2020, and August 2020) were evaluated different educational aspects of using virtual laboratory cases in a 4-week course within Animal Biotechnology. Overall, students regarded virtual laboratory simulation useful as part of their learning, and there is a significant increase in the level of acceptance before, during and post-COVID recovery phases. The study showed that across the different study cohorts, students perceived their confidence level in laboratory skills have been enhanced and that they can apply the skills in real-life situation. Interestingly, students (March and August 2020 cohort) who have not been exposed to the related laboratory session still perceived that the simulated activity provides clear explanation and realistic experience. Furthermore, it had been highlighted across the study cohorts that the quiz questions helped to enhance their understanding on the underlying principles of the laboratory techniques. The overall conclusion of this study was that structured simulation-based activities which provide clear instructions and explanation would support significant improvements in students learning.
Assuntos
Biotecnologia/educação , COVID-19/epidemiologia , Técnicas de Cultura de Células , Currículo , Laboratórios , SARS-CoV-2 , Realidade Virtual , Animais , HumanosRESUMO
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease which is mainly characterized by progressive impairment in cognition, emotion, language and memory in older population. Considering the impact of AD, formulations of pharmaceutical drugs and cholinesterase inhibitors have been widely propagated, receiving endorsement by FDA as a form of AD treatment. However, these medications were gradually discovered to be ineffective in removing the root of AD pathogenesis but merely targeting the symptoms so as to improve a patient's cognitive outcome. Hence, a search for better disease-modifying alternatives is put into motion. Having a clear understanding of the neuroprotective mechanisms and diverse properties undertaken by specific genes, antibodies and nanoparticles is central towards designing novel therapeutic agents. In this review, we provide a brief introduction on the background of Alzheimer's disease, the biology of blood-brain barrier, along with the potentials and drawbacks associated with current therapeutic treatment avenues pertaining to gene therapy, immunotherapy and nanotherapy for better diagnosis and management of Alzheimer's disease.
Assuntos
Doença de Alzheimer/terapia , Terapia Genética , Imunoterapia , Preparações Farmacêuticas/administração & dosagem , Nanomedicina Teranóstica , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Animais , Gerenciamento Clínico , HumanosRESUMO
Depression is a complex heterogeneous brain disorder characterized by a range of symptoms, resulting in psychomotor and cognitive disabilities and suicidal thoughts. Its prevalence has reached an alarming level affecting millions of people globally. Despite advances in current pharmacological treatments, the heterogenicity of clinical response and incidences of adverse effects have shifted research focus to identification of new natural substances with minimal or no adverse effects as therapeutic alternatives. Marine algae-derived extracts and their constituents are considered potential sources of secondary metabolites with diverse beneficial effects. Marine algae with enormous health benefits are emerging as a natural source for discovering new alternative antidepressants. Its medicinal properties exhibited shielding efficacy against neuroinflammation, oxidative stress, and mitochondrial dysfunction, which are indicated to underlie the pathogenesis of many neurological disorders. Marine algae have been found to ameliorate depressive-like symptoms and behaviors in preclinical and clinical studies by restoring monoaminergic neurotransmission, hypothalamic-pituitary-adrenal axis function, neuroplasticity, and continuous neurogenesis in the dentate gyrus of the hippocampus via modulating brain-derived neurotrophic factors and antineuroinflammatory activity. Although antidepressant effects of marine algae have not been validated in comparison with currently available synthetic antidepressants, they have been reported to have effects on the pathophysiology of depression, thus suggesting their potential as novel antidepressants. In this review, we analyzed the currently available research on the potential benefits of marine algae on depression, including their effects on the pathophysiology of depression, potential clinical relevance of their antidepressant effects in preclinical and clinical studies, and the underlying mechanisms of these effects.
RESUMO
Cancer is a heterogeneous disease with high morbidity and mortality rate involving changes in redox balance and deregulation of redox signalling. For decades, studies have involved developing an effective cancer treatment to combat treatment resistance. As natural products such as thymoquinone have numerous health benefits, studies are also focusing on using them as a viable method for cancer treatment, as they have minimal toxic effects compared with standard cancer treatments. Thymoquinone studies have shown numerous mechanisms of action, such as regulation of reactive species interfering with DNA structure, modulating various potential targets and their signalling pathways as well as immunomodulatory effects in vitro and in vivo. Thymoquinone's anti-cancer effect is mainly due to the induction of apoptotic mechanisms, such as activation of caspases, downregulation of precancerous genes, inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), anti-tumour cell proliferation, ROS regulation, hypoxia and anti-metastasis. Insight into thymoquinone's potential as an alternative treatment for chemoprevention and inflammation can be accomplished via compiling these studies, to provide a better understanding on how and why it works, as well as its interactions with common chemotherapeutic treatments.
Assuntos
Antineoplásicos/uso terapêutico , Benzoquinonas/uso terapêutico , Mediadores da Inflamação/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto/métodos , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologiaRESUMO
Despite technological advancement, there is no 100% effective treatment against metastatic cancer. Increasing resistance of cancer cells towards chemotherapeutic drugs along with detrimental side effects remained a concern. Thus, the urgency in developing new anticancer agents has been raised. Anticancer peptides have been proven to display potent activity against a wide variety of cancer cells. Several mode of actions describing their cytostatic and cytotoxic effect on cancer cells have been proposed which involves cell surface binding leading to membranolysis or internalization to reach their intracellular target. Understanding the mechanism of action of these anticancer peptides is important in achieving full therapeutic success. In the present article, we discuss the anticancer action of peptides accompanied by the mechanisms underpinning their toxicity to cancer cells.
Assuntos
Antineoplásicos , Neoplasias , Peptídeos , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Peptídeos/farmacocinética , Peptídeos/uso terapêuticoRESUMO
Cancer is characterised by uncontrolled cell division and abnormal cell growth, which is largely caused by a variety of gene mutations. There are continuous efforts being made to develop effective cancer treatments as resistance to current anticancer drugs has been on the rise. Natural products represent a promising source in the search for anticancer treatments as they possess unique chemical structures and combinations of compounds that may be effective against cancer with a minimal toxicity profile or few side effects compared to standard anticancer therapy. Extensive research on natural products has shown that bioactive natural compounds target multiple cellular processes and pathways involved in cancer progression. In this review, we discuss honokiol, a plant bioactive compound that originates mainly from the Magnolia species. Various studies have proven that honokiol exerts broad-range anticancer activity in vitro and in vivo by regulating numerous signalling pathways. These include induction of G0/G1 and G2/M cell cycle arrest (via the regulation of cyclin-dependent kinase (CDK) and cyclin proteins), epithelial-mesenchymal transition inhibition via the downregulation of mesenchymal markers and upregulation of epithelial markers. Additionally, honokiol possesses the capability to supress cell migration and invasion via the downregulation of several matrix-metalloproteinases (activation of 5' AMP-activated protein kinase (AMPK) and KISS1/KISS1R signalling), inhibiting cell migration, invasion, and metastasis, as well as inducing anti-angiogenesis activity (via the down-regulation of vascular endothelial growth factor (VEGFR) and vascular endothelial growth factor (VEGF)). Combining these studies provides significant insights for the potential of honokiol to be a promising candidate natural compound for chemoprevention and treatment.
RESUMO
Phyllanthus is a traditional medicinal plant that has been found to have antihepatitis, antibacterial, and anticancer properties. The present studies were to investigate the in vitro molecular mechanisms of anticancer effects of Phyllanthus (P. amarus, P. niruri, P. urinaria, and P. watsonii) plant extracts in human prostate adenocarcinoma. The cancer ten-pathway reporter array was performed and revealed that the expression of six pathway reporters were significantly decreased (Wnt, NFκB, Myc/Max, hypoxia, MAPK/ERK, and MAPK/JNK) in PC-3 cells after treatment with Phyllanthus extracts. Western blot was conducted and identified several signalling molecules that were affected in the signalling pathways including pan-Ras, c-Raf, RSK, Elk1, c-Jun, JNK1/2, p38 MAPK, c-myc, DSH, ß-catenin, Akt, HIF-1α, GSK3ß, NFκB p50 and p52, Bcl-2, Bax, and VEGF, in treated PC-3 cells. A proteomics-based approach, 2D gel electrophoresis, was performed, and mass spectrometry (MS/MS) results revealed that there were 72 differentially expressed proteins identified in treated PC-3 cells and were involved in tumour cell adhesion, apoptosis, glycogenesis and glycolysis, metastasis, angiogenesis, and protein synthesis and energy metabolism. Overall, these findings suggest that Phyllanthus can interfere with multiple signalling cascades involved in tumorigenesis and be used as a potential therapeutic candidate for treatment of cancer.
RESUMO
BACKGROUND: Phyllanthus is a traditional medicinal plant that has been used in the treatment of many diseases including hepatitis and diabetes. The main aim of the present work was to investigate the potential cytotoxic effects of aqueous and methanolic extracts of four Phyllanthus species (P.amarus, P.niruri, P.urinaria and P.watsonii) against skin melanoma and prostate cancer cells. METHODOLOGY/PRINCIPAL FINDINGS: Phyllanthus plant appears to possess cytotoxic properties with half-maximal inhibitory concentration (IC(50)) values of 150-300 µg/ml for aqueous extract and 50-150 µg/ml for methanolic extract that were determined using the MTS reduction assay. In comparison, the plant extracts did not show any significant cytotoxicity on normal human skin (CCD-1127Sk) and prostate (RWPE-1) cells. The extracts appeared to act by causing the formation of a clear "ladder" fragmentation of apoptotic DNA on agarose gel, displayed TUNEL-positive cells with an elevation of caspase-3 and -7 activities. The Lactate Dehydrogenase (LDH) level was lower than 15% in Phyllanthus treated-cancer cells. These indicate that Phyllanthus extracts have the ability to induce apoptosis with minimal necrotic effects. Furthermore, cell cycle analysis revealed that Phyllanthus induced a Go/G1-phase arrest on PC-3 cells and a S-phase arrest on MeWo cells and these were accompanied by accumulation of cells in the Sub-G1 (apoptosis) phase. The cytotoxic properties may be due to the presence of polyphenol compounds such as ellagitannins, gallotannins, flavonoids and phenolic acids found both in the water and methanol extract of the plants. CONCLUSIONS/SIGNIFICANCE: Phyllanthus plant exerts its growth inhibition effect in a selective manner towards cancer cells through the modulation of cell cycle and induction of apoptosis via caspases activation in melanoma and prostate cancer cells. Hence, Phyllanthus may be sourced for the development of a potent apoptosis-inducing anticancer agent.