Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Histochem Cell Biol ; 160(5): 391-405, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37395792

RESUMO

Short bowel syndrome (SBS) is a severe, life-threatening condition and one of the leading causes of intestinal failure in children. Here we were interested in changes in muscle layers and especially in the myenteric plexus of the enteric nervous system (ENS) of the small bowel in the context of intestinal adaptation. Twelve rats underwent a massive resection of the small intestine to induce SBS. Sham laparotomy without small bowel transection was performed in 10 rats. Two weeks after surgery, the remaining jejunum and ileum were harvested and studied. Samples of human small bowel were obtained from patients who underwent resection of small bowel segments due to a medical indication. Morphological changes in the muscle layers and the expression of nestin, a marker for neuronal plasticity, were studied. Following SBS, muscle tissue increases significantly in both parts of the small bowel, i.e., jejunum and ileum. The leading pathophysiological mechanism of these changes is hypertrophy. Additionally, we observed an increased nestin expression in the myenteric plexus in the remaining bowel with SBS. Our human data also showed that in patients with SBS, the proportion of stem cells in the myenteric plexus had risen by more than twofold. Our findings suggest that the ENS is tightly connected to changes in intestinal muscle layers and is critically involved in the process of intestinal adaptation to SBS.


Assuntos
Síndrome do Intestino Curto , Criança , Ratos , Humanos , Animais , Síndrome do Intestino Curto/etiologia , Síndrome do Intestino Curto/metabolismo , Nestina , Ratos Sprague-Dawley , Íleo/metabolismo , Íleo/cirurgia , Modelos Animais de Doenças , Plasticidade Neuronal
2.
Biomolecules ; 14(8)2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39199372

RESUMO

Pregnancy is a particularly vulnerable period for the growing fetus, when exposure to toxic agents, especially in the early phases, can decisively harm embryo development and compromise the future health of the newborn. The inclusion of various chemical substances in personal care products (PCPs) and cosmetic formulations can be associated with disruption and damage to the nervous system. Microplastics, benzophenones, parabens, phthalates and metals are among the most common chemical substances found in cosmetics that have been shown to induce neurotoxic mechanisms. Although cosmetic neurotoxin exposure is believed to be minimal, different exposure scenarios of cosmetics suggest that these neurotoxins remain a threat. Special attention should be paid to early exposure in the first weeks of gestation, when critical processes, like the migration and proliferation of the neural crest derived cells, start to form the ENS. Importantly, cosmetic neurotoxins can cross the placental barrier and affect the future embryo, but they are also secreted in breast milk, so babies remain exposed for longer periods, even after birth. In this review, we explore how neurotoxins contained in cosmetics and PCPs may have a role in the pathogenesis of various neurodevelopmental disorders and neurodegenerative diseases and, therefore, also in congenital enteric aganglionosis as well as in postnatal motility disorders. Understanding the mechanisms of these chemicals used in cosmetic formulations and their role in neurotoxicity is crucial to determining the safety of use for cosmetic products during pregnancy.


Assuntos
Cosméticos , Humanos , Feminino , Gravidez , Cosméticos/efeitos adversos , Neurotoxinas/toxicidade , Síndromes Neurotóxicas/etiologia , Ácidos Ftálicos/toxicidade , Animais
3.
Biomolecules ; 14(8)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39199380

RESUMO

Hirschsprung's disease (HSCR, incidence 1/5000 live births) is caused by the failure of neural crest-derived precursors to migrate, survive, proliferate, or differentiate during the embryonic development of the Enteric Nervous System (ENS), which could be disrupted by many factors, including inflammatory processes. The NF-κB family controls several biological processes, including inflammation, neurogenesis, and cell migration. With the aim of studying the potential role of NF-κB in HSCR, we have analyzed the expression of the NF-κB main subunits and other NF-κB-related genes by RT-qPCR in HSCR tissue samples (sub-divided into ganglionic and aganglionic segments). We found decreased gene expression of the NF-κB main subunit RELA but also of NFKBIA, TNFA, TFGBR2, and ERBB3 in the pathologic distal aganglionic segments compared to the proximal ganglionic segments. Moreover, we could also confirm the lower protein expression of RelA/p65 in the aganglionic distal segments by immunofluorescence staining. Further, we show that the expression of RelA/p65 protein in the proximal segments concurs with lymphocyte infiltration in the bowel tissue, indicating a pro-inflammatory activation of p65 in the proximal ganglionic HSCR tissue in the patients analyzed. All in all, our findings suggest that the modulation of NF-κB signaling in the neuro-enteric system does obviously contribute to the pathological effects of HSCR.


Assuntos
Doença de Hirschsprung , Inflamação , NF-kappa B , Transdução de Sinais , Fator de Transcrição RelA , Doença de Hirschsprung/metabolismo , Doença de Hirschsprung/genética , Doença de Hirschsprung/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética , NF-kappa B/metabolismo , Feminino , Masculino , Lactente
4.
Biol Methods Protoc ; 9(1): bpae022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628556

RESUMO

Cell replacement in aganglionic intestines is a promising, yet merely experimental tool for the therapy of congenital dysganglionosis of the enteric nervous system like Hirschsprung disease. While the injection of single cells or neurospheres to a defined and very restricted location is trivial, the translation to the clinical application, where large aganglionic or hypoganglionic areas need to be colonized (hundreds of square centimetres), afford a homogeneous distribution of multiple neurospheres all over the affected tissue areas. Reaching the entire aganglionic area in vivo is critical for the restoration of peristaltic function. The latter mainly depends on an intact nervous system that extends throughout the organ. Intra-arterial injection is a common method in cell therapy and may be the key to delivering cells or neurospheres into the capillary bed of the colon with area-wide distribution. We describe an experimental method for monitoring the distribution of a defined number of neurospheres into porcine recta ex vivo, immediately after intra-arterial injection. We designed this method to localize grafting sites of single neurospheres in precise biopsies which can further be examined in explant cultures. The isolated perfused porcine rectum allowed us to continuously monitor the perfusion pressure. A blockage of too many capillaries would lead to an ischaemic situation and an increase of perfusion pressure. Since we could demonstrate that the area-wide delivery of neurospheres did not alter the overall vascular resistance, we showed that the delivery does not significantly impair the local circulation.

5.
Eur J Pediatr Surg ; 33(4): 299-309, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35777734

RESUMO

OBJECTIVE: Hirschsprung's disease (HSCR) is a congenital intestinal neurodevelopmental disorder characterized by the absence of enteric ganglion cells in the distal colon. Although Hirschsprung-associated enterocolitis (HAEC) is the most frequent life-threatening complication in HSCR, to date reliable biomarkers predicting the likelihood of HAEC are yet to be established. We established a three-center retrospective study including 104 HSCR patients surgically treated between 1998 and 2019. MATERIALS AND METHODS: Patient-derived cryopreserved or paraffin-preserved colonic tissue at surgery was analyzed via ßIII-tubulin immunohistochemistry. We subsequently determined extrinsic mucosal nerve fiber density in resected rectosigmoid specimens and classified HSCR patients accordingly into nerve fiber-high or fiber-low groups. We compared the distribution of clinical parameters obtained from medical records between the fiber-high (n = 36) and fiber-low (n = 68) patient groups. We assessed the association between fiber phenotype and enterocolitis using univariate and multivariate logistic regression adjusted for age at operation. RESULTS: Enterocolitis was more prevalent in patients with sparse mucosal nerve fiber innervation (fiber-low phenotype, 87%) compared with the fiber-high phenotype (13%; p = 0.002). In addition, patients developing enterocolitis had a younger age at surgery (3 vs. 7 months; p = 0.016). In the univariate analysis, the odds for enterocolitis development in the fiber-low phenotype was 5.26 (95% confidence interval [CI], 1.67-16.59; p = 0.005) and 4.01 (95% CI, 1.22-13.17; p = 0.022) when adjusted for age. CONCLUSION: Here, we showed that HSCR patients with a low mucosal nerve fiber innervation grade in the distal aganglionic colon have a higher risk of developing HAEC. Consequently, histopathologic analysis of the nerve fiber innervation grade could serve as a novel sensitive prognostic marker associated with the development of enterocolitis in HSCR patients.


Assuntos
Enterocolite , Doença de Hirschsprung , Humanos , Estudos Retrospectivos , Estudos de Coortes , Enterocolite/complicações , Doença de Hirschsprung/complicações , Doença de Hirschsprung/cirurgia , Doença de Hirschsprung/genética , Reto/patologia , Fibras Nervosas/patologia
6.
Environ Pollut ; 270: 116179, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33348142

RESUMO

The developing nervous system is highly vulnerable to environmental toxicants especially pesticides. Glyphosate pesticide induces neurotoxicity both in humans and rodents, but so far only when exposed to higher concentrations. A few studies, however, have also reported the risk of general toxicity of glyphosate at concentrations comparable to allowable limits set up by environmental protection authorities. In vitro data regarding glyphosate neurotoxicity at concentrations comparable to maximum permissible concentrations in drinking water is lacking. In the present study, we established an in vitro assay based upon neural stem cells (NSCs) from the subventricular zone of the postnatal mouse to decipher the effects of two maximum permissible concentrations of glyphosate in drinking water on the basic neurogenesis processes. Our results demonstrated that maximum permissible concentrations of glyphosate recognized by environmental protection authorities significantly reduced the cell migration and differentiation of NSCs as demonstrated by the downregulation of the expression levels of the neuronal ß-tubulin III and the astrocytic S100B genes. The expression of the cytoprotective gene CYP1A1 was downregulated whilst the expression of oxidative stresses indicator gene SOD1 was upregulated. The concentration comparable to non-toxic human plasma concentration significantly induced cytotoxicity and activated Ca2+ signalling in the differentiated culture. Our findings demonstrated that the permissible concentrations of glyphosate in drinking water recognized by environmental protection authorities are capable of inducing neurotoxicity in the developing nervous system.


Assuntos
Água Potável , Herbicidas , Células-Tronco Neurais , Animais , Água Potável/análise , Glicina/análogos & derivados , Glicina/toxicidade , Herbicidas/análise , Ventrículos Laterais/química , Camundongos , Células-Tronco Neurais/química , Glifosato
7.
Oncogenesis ; 8(1): 4, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30631037

RESUMO

Clear cell renal cell carcinoma (ccRCC) is intimately associated with defects in ubiquitin-mediated protein degradation. Herein, we report that deficiency in the E3 ligase subunit cullin 5 (CUL5) promotes chromosomal instability and is an independent negative prognostic factor in ccRCC. CUL5 was initially identified in an RNA interference screen as a novel regulator of centrosome duplication control. We found that depletion of CUL5 rapidly promotes centriole overduplication and mitotic errors. Downregulation of CUL5 also caused an increase of DNA damage that was found to involve impaired DNA double-strand break repair. Using immunohistochemistry, CUL5 protein expression was found to be below detection level in the majority of RCCs. A re-analysis of the TCGA ccRCC cohort showed that a reduced CUL5 gene expression or CUL5 deletion were associated with a significantly worse overall patient survival. In conclusion, our results indicate that CUL5 functions as a novel tumor suppressor with prognostic relevance in ccRCC and is critically involved in the maintenance of genome stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA