RESUMO
The cell cycle inhibitor p27Kip1 is a tumor suppressor via the inhibition of CDK complexes in the nucleus. However, p27 also plays other functions in the cell and may acquire oncogenic roles when located in the cytoplasm. Activation of oncogenic pathways such as Ras or PI3K/AKT causes the relocalization of p27 in the cytoplasm, where it can promote tumorigenesis by unclear mechanisms. Here, we investigated how cytoplasmic p27 participates in the development of non-small cell lung carcinomas. We provide molecular and genetic evidence that the oncogenic role of p27 is mediated, at least in part, by binding to and inhibiting the GTPase RhoB, which normally acts as a tumor suppressor in the lung. Genetically modified mice revealed that RhoB expression is preferentially lost in tumors in which p27 is absent and maintained in tumors expressing wild-type p27 or p27CK- , a mutant that cannot inhibit CDKs. Moreover, although the absence of RhoB promoted tumorigenesis in p27-/- animals, it had no effect in p27CK- knock-in mice, suggesting that cytoplasmic p27 may act as an oncogene, at least in part, by inhibiting the activity of RhoB. Finally, in a cohort of lung cancer patients, we identified a subset of tumors harboring cytoplasmic p27 in which RhoB expression is maintained and these characteristics were strongly associated with decreased patient survival. Thus, monitoring p27 localization and RhoB levels in non-small cell lung carcinoma patients appears to be a powerful prognostic marker for these tumors. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Adenocarcinoma de Pulmão/enzimologia , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Citoplasma/enzimologia , Neoplasias Pulmonares/enzimologia , Proteína rhoB de Ligação ao GTP/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Carcinogênese , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Inibidor de Quinase Dependente de Ciclina p27/deficiência , Inibidor de Quinase Dependente de Ciclina p27/genética , Citoplasma/genética , Citoplasma/patologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Ligação Proteica , Transdução de Sinais , Proteína rhoB de Ligação ao GTP/genéticaRESUMO
Drug-tolerance has emerged as one of the major non-genetic adaptive processes driving resistance to targeted therapy (TT) in non-small cell lung cancer (NSCLC). However, the kinetics and sequence of molecular events governing this adaptive response remain poorly understood. Here, we combine real-time monitoring of the cell-cycle dynamics and single-cell RNA sequencing in a broad panel of oncogenic addiction such as EGFR-, ALK-, BRAF- and KRAS-mutant NSCLC, treated with their corresponding TT. We identify a common path of drug adaptation, which invariably involves alveolar type 1 (AT1) differentiation and Rho-associated protein kinase (ROCK)-mediated cytoskeletal remodeling. We also isolate and characterize a rare population of early escapers, which represent the earliest resistance-initiating cells that emerge in the first hours of treatment from the AT1-like population. A phenotypic drug screen identify farnesyltransferase inhibitors (FTI) such as tipifarnib as the most effective drugs in preventing relapse to TT in vitro and in vivo in several models of oncogenic addiction, which is confirmed by genetic depletion of the farnesyltransferase. These findings pave the way for the development of treatments combining TT and FTI to effectively prevent tumor relapse in oncogene-addicted NSCLC patients.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Farnesiltranstransferase , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Farnesiltranstransferase/antagonistas & inibidores , Farnesiltranstransferase/metabolismo , Farnesiltranstransferase/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Animais , Camundongos , Vício Oncogênico/genética , Terapia de Alvo Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Oncogenes/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , QuinolonasRESUMO
BACKGROUND: Interstitial lung disease is a heterogeneous group of diseases, some of which are known to present an independent risk factor for lung cancer. Its pathophysiological mechanism has not been fully elucidated and therapeutic management is also complex. We aim to both describe a cohort of patients with lung cancer associated with pre-existing fibrosing interstitial lung disease and to characterize their molecular profile. METHODS: We conducted a retrospective, single centre cohort study, at Toulouse University Hospital. Immuno-histochemical (PD-L1, CD8) and molecular analysis was performed on archived tumour sample. Molecular signalling pathways involved were analysed with the Reactome Pathway Database. RESULTS: Forty-nine patients were analysed. Most common histology was adenocarcinoma (65,3%), followed by squamous cell carcinoma (30.6%). Idiopathic pulmonary fibrosis (30,6%) and interstitial lung disease associated with connective tissue disease (22,4%) were mostly diagnosed. Usual interstitial pneumonia dominated the scans patterns. A high proportion of early tumour stages was observed and overall survival was 34,5 months. In metastatic stages response rate to first line chemotherapy was 38% and overall survival was 11,2 months. Main cause of death was complex cancer progression. PD-L1 expression (n=23) was low (0%) to intermediate (1-49%). Tumour mutational burden was low in 69,2% of analysed cases (n=12) and microsatellite status was stable in all cases (n=13). Sample genotyping (n=14) showed frequent involvement of the TP53 gene and the implication of signalling pathways common to fibrotic processes such as TGFß and PI3K/AKT. CONCLUSIONS: We suggest a particular phenotype of lung cancer associated with fibrosing interstitial lung disease that could provide the basis for specific therapeutic strategies.
Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/genética , Estudos Retrospectivos , Estudos de Coortes , Fosfatidilinositol 3-Quinases , Doenças Pulmonares Intersticiais/epidemiologia , Doenças Pulmonares Intersticiais/genética , Fibrose Pulmonar Idiopática/complicações , Fibrose Pulmonar Idiopática/epidemiologia , Fibrose Pulmonar Idiopática/genética , Fibrose , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genéticaRESUMO
BACKGROUND: ALK, ROS1 and RET rearrangements occur, respectively, in 5%, 2%, and 1% non-small cell lung cancers (NSCLC). ALK and ROS1 fusion proteins detection by immunohistochemistry (IHC) has been validated for rapid patient screening, but ROS1 fusions need to be confirmed by another technique and no RET IHC test is available for clinical use. RESEARCH DESIGN AND METHODS: We report herein the usefulness of the HTG EdgeSeq Assay, an RNA extraction-free test combining a quantitative nuclease protection assay with NGS, for the detection of ALK, ROS1 and RET fusions from 'real-life' small NSCLC samples. A total of 203 FFPE samples were collected from 11 centers. They included 143 rearranged NSCLC (87 ALK, 39 ROS1, 17 RET) and 60 ALK-ROS1-RET negative controls. RESULTS: The assay had a specificity of 98% and a sensitivity for ALK, ROS1 and RET fusions of 80%, 94% and 100% respectively. Among the 19 HTG-assay false negative samples, the preanalytical conditions were identified as the major factors impacting the assay efficiency. CONCLUSIONS: Overall, the HTG EdgeSeq assay offers comparable sensitivities and specificity than other RNA sequencing techniques, with the advantage that it can be used on very small and old samples collected multicentrically.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Inclusão em Parafina , Humanos , Quinase do Linfoma Anaplásico/análise , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Proteínas de Fusão Oncogênica/análise , Proteínas Tirosina Quinases/análise , Proteínas Proto-Oncogênicas/análise , Proteínas Proto-Oncogênicas c-ret/análise , Proteínas Proto-Oncogênicas c-ret/metabolismo , RNA , Imunoquímica/métodosRESUMO
BACKGROUND: Immunotherapy is currently under investigation in B3 Thymoma (TB3) and Thymic Carcinoma (TC). PD-L1 expression has been evaluated on a limited number of patients with selected antibodies. We aimed to analyze cohort of TB3 and TC with a panel of antibodies to assess the prevalence of PD-L1 expression, its prognostic value and to set up a reproducible test. METHODS: We retrospectively studied 103 patients samples of FFPE histologically confirmed TB3 (n = 53) and TC (n = 50) by expert pathologists within the RYTHMIC national network. We compared PD-L1, PD1, CD8 and PD-L2 expression and performed correlation with tumor types and patients outcomes. Four PD-L1 antibodies were tested, three of them validated as companion tests in lung cancer, one tested on two automates on whole section of tumors. We evaluated the percentage and intensity of both epithelial and immune stained cells. RESULTS: TB3 epithelial cells had a higher and more diffuse expression of PD-L1 than TC regardless the antibodies tested (p < 0.0001). Three out of four antibodies targeting PD-L1 tested on the DAKO autostainer gave similar staining. Concordance between antibodies was lower for PD-L1 staining on immune cells with no significant difference between TB3 and TC except on E1L3N antibody. PD-L2 antibody stained no tumor epithelial cells. High PD-L1 expression was correlated with a better overall survival for TB3 and was not correlated with tumor staging. CONCLUSION: Frequent PD-L1 expression, particularly in TB3, paves the way for immunotherapy in TET (Thymic Epithelial Tumor). Otherwise, we have set up three reproducible LDT (laboratory-developed test) for four PD-L1 antibodies.
RESUMO
Before initiating treatment of advanced non-small-cell lung cancer with tyrosine kinase inhibitors (eg, erlotinib, gefitinib, osimertinib, and afatinib), which inhibit the catalytic activity of epidermal growth factor receptor (EGFR), clinical guidelines require determining the EGFR mutational status for activating (EGFR exons 18, 19, 20, or 21) and resistance (EGFR exon 20) mutations. The EGFR resistance mutation T790M should be monitored at cancer progression. The Idylla EGFR Mutation Assay, performed on the Idylla molecular diagnostics platform, is a fully automated (<2.5 hours turnaround time) sample-to-result molecular test to qualitatively detect 51 EGFR oncogene point mutations, deletions, or insertions. In a 15-center evaluation, Idylla results on 449 archived formalin-fixed, paraffin-embedded tissue sections, originating from non-small-cell lung cancer biopsies and resection specimens, were compared with data obtained earlier with routine reference methods, including next-generation sequencing, Sanger sequencing, pyrosequencing, mass spectrometry, and PCR-based assays. When results were discordant, a third method of analysis was performed, when possible, to confirm test results. After confirmation testing and excluding invalids/errors and discordant results by design, a concordance of 97.6% was obtained between Idylla and routine test results. Even with <10 mm2 of tissue area, a valid Idylla result was obtained in 98.9% of the cases. The Idylla EGFR Mutation Assay enables sensitive detection of most relevant EGFR mutations in concordance with current guidelines, with minimal molecular expertise or infrastructure.