Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1866(9): 165570, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678162

RESUMO

The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative lysosomal storage disorders (LSDs), traditionally grouped together based on shared clinical symptoms. The recent emergence of new forms of NCL along with an improved understanding of endo-lysosomal system function have necessitated the reassessment of their classification and pathogenesis. Novel clinical findings, as well as observations in various animal models of NCL, have revealed significant pathological changes in regions outside the brain, as well as progression of disease along connected anatomical pathways. The characterization of animal models of NCLs has not only highlighted the vulnerability of certain neuron populations but has also revealed glial cells to be adversely affected and actively contribute to disease progression. While the lysosome has been thought of as being the 'waste-disposal' unit of the cell, recent evidence of the endo-lysosomal system playing a crucial role in nutrient sensing and cellular homeostasis have shown that NCL mutations have far-ranging effects on cellular functions including autophagy and synaptic dysfunction. The discovery of the machinery controlling endo-lysosomal function via transcription factor EB (TFEB) and mTORC1, have also shed light on potential mechanisms by which NCL mutations may exert their effect. While the NCLs share many common down-stream pathologies, there is a growing body of evidence for unique pathogenic pathways in each form. In light of the rapid advances in therapeutic strategies for the NCLs and LSDs, these new lessons learnt about unique NCL pathomechanisms will be key for informing the targeting, timing and strategies for future treatments.


Assuntos
Proteínas de Membrana/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Fatores de Transcrição/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Lisossomos/metabolismo , Lisossomos/patologia , Proteínas de Membrana/genética , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Fatores de Transcrição/genética
2.
Front Neurol ; 10: 963, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572287

RESUMO

Batten disease, or juvenile NCL, is a fatal neurodegenerative disorder that occurs due to mutations in the CLN3 gene. Because the function of CLN3 remains unclear, experimental therapies for JNCL have largely concentrated upon the targeting of downstream pathomechanisms. Neuron loss is preceded by localized glial activation, and in this proof-of-concept study we have investigated whether targeting this innate immune response with ibuprofen in combination with the neuroprotective agent lamotrigine improves the previously documented beneficial effects of immunosuppressants alone. Drugs were administered daily to symptomatic Cln3 -/- mice over a 3 month period, starting at 6 months of age, and their impact was assessed using both behavioral and neuropathological outcome measures. During the treatment period, the combination of ibuprofen and lamotrigine significantly improved the performance of Cln3 -/- mice on the vertical pole test, slowing the disease-associated decline, but had less of an impact upon their rotarod performance. There were also moderate and regionally dependent effects upon astrocyte activation that were most pronounced for ibuprofen alone, but there was no overt effect upon microglial activation. Administering such treatments for longer periods will enable testing for any impact upon the neuron loss that occurs later in disease progression. Given the partial efficacy of these treatments, it will be important to test further drugs of this type in order to find more effective combinations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA