Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
BMC Med ; 22(1): 490, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39444028

RESUMO

BACKGROUND: Inflammation is characterized by a metabolic switch promoting glycolysis and lactate production. Hexokinases (HK) catalyze the first reaction of glycolysis and inhibition of epithelial HK2 protected from colitis in mice. HK2 expression has been described as elevated in patients with intestinal inflammation; however, there is conflicting data from few cohorts especially with severely inflamed individuals; thus, systematic studies linking disease activity with HK2 levels are needed. METHODS: We examined the relationship between HK2 expression and inflammation severity using bulk transcriptome data derived from the mucosa of thoroughly phenotyped inflammatory bowel disease (IBD) patients of two independent cohorts including both subtypes Crohn's disease (CD) and ulcerative colitis (UC). Publicly available single-cell RNA sequencing data were analyzed, and immunofluorescence staining on colonic biopsies of unrelated patients with intestinal inflammation was performed to confirm the RNA-based findings on cellular and protein level. RESULTS: HK2 expression gradually increased from mild to intermediate inflammation, yet strongly declined at high inflammation scores. Expression of epithelial marker genes also declined at high inflammation scores, whereas that of candidate immune marker genes increased, indicating a cellular remodeling of the mucosa during inflammation with an infiltration of HK2-negative immune cells and a loss of terminal differentiated epithelial cells in the apical epithelium-the main site of HK2 expression. Normalizing for the enterocyte loss clearly identified epithelial HK2 expression as gradually increasing with disease activity and remaining elevated at high inflammation scores. HK2 protein expression was mostly restricted to brush border enterocytes, and these cells along with HK2 levels vanished with increasing disease severity. CONCLUSIONS: Our findings clearly define dysregulated epithelial HK2 expression as an indicator of disease activity in intestinal inflammation and suggest targeted HK2-inhibition as a potential therapeutic avenue.


Assuntos
Enterócitos , Hexoquinase , Doenças Inflamatórias Intestinais , Índice de Gravidade de Doença , Humanos , Enterócitos/patologia , Enterócitos/enzimologia , Hexoquinase/genética , Hexoquinase/metabolismo , Doenças Inflamatórias Intestinais/patologia , Feminino , Masculino , Adulto , Mucosa Intestinal/patologia , Mucosa Intestinal/enzimologia , Pessoa de Meia-Idade , Inflamação/patologia
2.
Proc Natl Acad Sci U S A ; 117(35): 21459-21468, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817436

RESUMO

Animal development has traditionally been viewed as an autonomous process directed by the host genome. But, in many animals, biotic and abiotic cues, like temperature and bacterial colonizers, provide signals for multiple developmental steps. Hydra offers unique features to encode these complex interactions of developmental processes with biotic and abiotic factors, and we used it here to investigate the impact of bacterial colonizers and temperature on the pattern formation process. In Hydra, formation of the head organizer involves the canonical Wnt pathway. Treatment with alsterpaullone (ALP) results in acquiring characteristics of the head organizer in the body column. Intriguingly, germfree Hydra polyps are significantly more sensitive to ALP compared to control polyps. In addition to microbes, ß-catenin-dependent pattern formation is also affected by temperature. Gene expression analyses led to the identification of two small secreted peptides, named Eco1 and Eco2, being up-regulated in the response to both Curvibacter sp., the main bacterial colonizer of Hydra, and low temperatures. Loss-of-function experiments revealed that Eco peptides are involved in the regulation of pattern formation and have an antagonistic function to Wnt signaling in Hydra.


Assuntos
Hydra/genética , Hydra/metabolismo , beta Catenina/metabolismo , Animais , Bactérias/metabolismo , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Interação Gene-Ambiente , Hydra/fisiologia , Peptídeos/metabolismo , Temperatura , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia
3.
PLoS Pathog ; 16(3): e1008375, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32191776

RESUMO

The extent to which disturbances in the resident microbiota can compromise an animal's health is poorly understood. Hydra is one of the evolutionary oldest animals with naturally occurring tumors. Here, we found a causal relationship between an environmental spirochete (Turneriella spec.) and tumorigenesis in Hydra. Unexpectedly, virulence of this pathogen requires the presence of Pseudomonas spec., a member of Hydra´s beneficial microbiome indicating that dynamic interactions between a resident bacterium and a pathogen cause tumor formation. The observation points to the crucial role of commensal bacteria in maintaining tissue homeostasis and adds support to the view that microbial community interactions are essential for disease. These findings in an organism that shares deep evolutionary connections with all animals have implications for our understanding of cancer.


Assuntos
Carcinogênese , Hydra , Leptospiraceae/metabolismo , Microbiota , Neoplasias , Pseudomonas/metabolismo , Animais , Hydra/metabolismo , Hydra/microbiologia , Neoplasias/metabolismo , Neoplasias/microbiologia
4.
Exp Cell Res ; 319(18): 2883-92, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23988607

RESUMO

Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions.


Assuntos
Adipogenia/efeitos dos fármacos , Fenômenos Fisiológicos Bacterianos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais , Osteogênese/efeitos dos fármacos , Tecido Adiposo/citologia , Adjuvantes Imunológicos/farmacologia , Fosfatase Alcalina/metabolismo , Bactérias/química , Bactérias/metabolismo , Aderência Bacteriana , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Temperatura Alta , Humanos , Lipopolissacarídeos/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/microbiologia , Microscopia Eletrônica de Varredura , Reação em Cadeia da Polimerase em Tempo Real , Ácidos Teicoicos/farmacologia
5.
Microorganisms ; 12(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38399728

RESUMO

Parkinson's disease (PD) is a chronic and progressive neurodegenerative disease with the major symptoms comprising loss of movement coordination (motor dysfunction) and non-motor dysfunction, including gastrointestinal symptoms. Alterations in the gut microbiota composition have been reported in PD patients vs. controls. However, it is still unclear how these compositional changes contribute to disease etiology and progression. Furthermore, most of the available studies have focused on European, Asian, and North American cohorts, but the microbiomes of PD patients in Latin America have not been characterized. To address this problem, we obtained fecal samples from Colombian participants (n = 25 controls, n = 25 PD idiopathic cases) to characterize the taxonomical community changes during disease via 16S rRNA gene sequencing. An analysis of differential composition, diversity, and personalized computational modeling was carried out, given the fecal bacterial composition and diet of each participant. We found three metabolites that differed in dietary habits between PD patients and controls: carbohydrates, trans fatty acids, and potassium. We identified six genera that changed significantly in their relative abundance between PD patients and controls, belonging to the families Lachnospiraceae, Lactobacillaceae, Verrucomicrobioaceae, Peptostreptococcaceae, and Streptococcaceae. Furthermore, personalized metabolic modeling of the gut microbiome revealed changes in the predicted production of seven metabolites (Indole, tryptophan, fructose, phenylacetic acid, myristic acid, 3-Methyl-2-oxovaleric acid, and N-Acetylneuraminic acid). These metabolites are associated with the metabolism of aromatic amino acids and their consumption in the diet. Therefore, this research suggests that each individual's diet and intestinal composition could affect host metabolism. Furthermore, these findings open the door to the study of microbiome-host interactions and allow us to contribute to personalized medicine.

6.
Microbiol Spectr ; 12(2): e0114423, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38230938

RESUMO

While numerous health-beneficial interactions between host and microbiota have been identified, there is still a lack of targeted approaches for modulating these interactions. Thus, we here identify precision prebiotics that specifically modulate the abundance of a microbiome member species of interest. In the first step, we show that defining precision prebiotics by compounds that are only taken up by the target species but no other species in a community is usually not possible due to overlapping metabolic niches. Subsequently, we use metabolic modeling to identify precision prebiotics for a two-member Caenorhabditis elegans microbiome community comprising the immune-protective target species Pseudomonas lurida MYb11 and the persistent colonizer Ochrobactrum vermis MYb71. We experimentally confirm four of the predicted precision prebiotics, L-serine, L-threonine, D-mannitol, and γ-aminobutyric acid, to specifically increase the abundance of MYb11. L-serine was further assessed in vivo, leading to an increase in MYb11 abundance also in the worm host. Overall, our findings demonstrate that metabolic modeling is an effective tool for the design of precision prebiotics as an important cornerstone for future microbiome-targeted therapies.IMPORTANCEWhile various mechanisms through which the microbiome influences disease processes in the host have been identified, there are still only few approaches that allow for targeted manipulation of microbiome composition as a first step toward microbiome-based therapies. Here, we propose the concept of precision prebiotics that allow to boost the abundance of already resident health-beneficial microbial species in a microbiome. We present a constraint-based modeling pipeline to predict precision prebiotics for a minimal microbial community in the worm Caenorhabditis elegans comprising the host-beneficial Pseudomonas lurida MYb11 and the persistent colonizer Ochrobactrum vermis MYb71 with the aim to boost the growth of MYb11. Experimentally testing four of the predicted precision prebiotics, we confirm that they are specifically able to increase the abundance of MYb11 in vitro and in vivo. These results demonstrate that constraint-based modeling could be an important tool for the development of targeted microbiome-based therapies against human diseases.


Assuntos
Microbiota , Prebióticos , Pseudomonas , Animais , Humanos , Caenorhabditis elegans , Serina
7.
medRxiv ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39211892

RESUMO

Inflammatory bowel disease (IBD) is associated with perturbed metabolism of the essential amino acid tryptophan (Trp). Whether increased degradation of Trp directly fuels mucosal inflammation or acts as a compensatory attempt to restore cellular energy levels via de-novo nicotinamide adenine dinucleotide (NAD + ) synthesis is not understood. Employing a systems medicine approach on longitudinal IBD therapy intervention cohorts and targeted screening in preclinical IBD models, we discover that steady increases in Trp levels upon therapy success coincide with a rewiring of metabolic processes within the kynurenine pathway (KP). In detail, we identify that Trp catabolism in IBD is metabolically constrained at the level of quinolinate phosphorybosyltransferase (QPRT), leading to accumulation of quinolinic acid (Quin) and a decrease of NAD + . We further demonstrate that Trp degradation along the KP occurs locally in the inflamed intestinal mucosa and critically depends on janus kinase / signal transducers and activators of transcription (JAK/STAT) signalling. Subsequently, knockdown of QPRT in-vitro induces NAD + depletion and a pro-inflammatory state, which can largely be rescued by bypassing QPRT via other NAD + precursors. We hence propose a model of impaired de-novo NAD + synthesis from Trp in IBD. These findings point towards the replenishment of NAD + precursors as a novel therapeutic pathway in IBD.

8.
bioRxiv ; 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36824941

RESUMO

The microbiome is increasingly receiving attention as an important modulator of host health and disease. However, while numerous mechanisms through which the microbiome influences its host have been identified, there is still a lack of approaches that allow to specifically modulate the abundance of individual microbes or microbial functions of interest. Moreover, current approaches for microbiome manipulation such as fecal transfers often entail a non-specific transfer of entire microbial communities with potentially unwanted side effects. To overcome this limitation, we here propose the concept of precision prebiotics that specifically modulate the abundance of a microbiome member species of interest. In a first step, we show that defining precision prebiotics by compounds that are only taken up by the target species but no other species in a community is usually not possible due to overlapping metabolic niches. Subsequently, we present a metabolic modeling network framework that allows us to define precision prebiotics for a two-member C. elegans microbiome model community comprising the immune-protective Pseudomonas lurida MYb11 and the persistent colonizer Ochrobactrum vermis MYb71. Thus, we predicted compounds that specifically boost the abundance of the host-beneficial MYb11, four of which were experimentally validated in vitro (L-serine, L-threonine, D-mannitol, and γ-aminobutyric acid). L-serine was further assessed in vivo, leading to an increase in MYb11 abundance also in the worm host. Overall, our findings demonstrate that constraint-based metabolic modeling is an effective tool for the design of precision prebiotics as an important cornerstone for future microbiome-targeted therapies.

9.
Gut Microbes ; 15(2): 2286675, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38059748

RESUMO

Inflammatory bowel disease (IBD) is a persistent inflammatory condition that affects the gastrointestinal tract and presents significant challenges in its management and treatment. Despite the knowledge that within-host bacterial evolution occurs in the intestine, the disease has rarely been studied from an evolutionary perspective. In this study, we aimed to investigate the evolution of resident bacteria during intestinal inflammation and whether- and how disease-related bacterial genetic changes may present trade-offs with potential therapeutic importance. Here, we perform an in vivo evolution experiment of E. coli in a gnotobiotic mouse model of IBD, followed by multiomic analyses to identify disease-specific genetic and phenotypic changes in bacteria that evolved in an inflamed versus a non-inflamed control environment. Our results demonstrate distinct evolutionary changes in E. coli specific to inflammation, including a single nucleotide variant that independently reached high frequency in all inflamed mice. Using ex vivo fitness assays, we find that these changes are associated with a higher fitness in an inflamed environment compared to isolates derived from non-inflamed mice. Further, using large-scale phenotypic assays, we show that bacterial adaptation to inflammation results in clinically relevant phenotypes, which intriguingly include collateral sensitivity to antibiotics. Bacterial evolution in an inflamed gut yields specific genetic and phenotypic signatures. These results may serve as a basis for developing novel evolution-informed treatment approaches for patients with intestinal inflammation.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Escherichia coli/genética , Relevância Clínica , Doenças Inflamatórias Intestinais/genética , Bactérias , Inflamação , Genótipo
10.
Front Microbiol ; 13: 799333, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308397

RESUMO

Most animals co-exist with diverse host-associated microbial organisms that often form complex communities varying between individuals, habitats, species and higher taxonomic levels. Factors driving variation in the diversity of host-associated microbes are complex and still poorly understood. Here, we describe the bacterial composition of field-collected Hydra, a freshwater cnidarian that forms stable associations with microbial species in the laboratory and displays complex interactions with components of the microbiota. We sampled Hydra polyps from 21 Central European water bodies and identified bacterial taxa through 16S rRNA sequencing. We asked whether diversity and taxonomic composition of host-associated bacteria depends on sampling location, habitat type, host species or host reproductive mode (sexual vs. asexual). Bacterial diversity was most strongly explained by sampling location, suggesting that the source environment plays an important role in the assembly of bacterial communities associated with Hydra polyps. We also found significant differences between host species in their bacterial composition that partly mirrored variations observed in lab strains. Furthermore, we detected a minor effect of host reproductive mode on bacterial diversity. Overall, our results suggest that extrinsic (habitat identity) factors predict the diversity of host-associated bacterial communities more strongly than intrinsic (species identity) factors, however, only a combination of both factors determines microbiota composition in Hydra.

11.
Front Cell Dev Biol ; 9: 653792, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178983

RESUMO

Nuclear receptors (NRs) fulfill key roles in the coordination of postembryonal developmental transitions in animal species. They control the metamorphosis and sexual maturation in virtually all animals and by that the two main environmental-dependent developmental decision points. Sexual maturation and metamorphosis are controlled by steroid receptors and thyroid receptors, respectively in vertebrates, while both processes are orchestrated by the ecdysone receptor (EcR) in insects. The regulation of these processes depends on environmental factors like nutrition, temperature, or photoperiods and by that NRs form evolutionary conserved mediators of phenotypic plasticity. While the mechanism of action for metamorphosis and sexual maturation are well studied in model organisms, the evolution of these systems is not entirely understood and requires further investigation. We here review the current knowledge of NR involvement in metamorphosis and sexual maturation across the animal tree of life with special attention to environmental integration and evolution of the signaling mechanism. Furthermore, we compare commonalities and differences of the different signaling systems. Finally, we identify key gaps in our knowledge of NR evolution, which, if sufficiently investigated, would lead to an importantly improved understanding of the evolution of complex signaling systems, the evolution of life history decision points, and, ultimately, speciation events in the metazoan kingdom.

12.
Nat Commun ; 10(1): 3257, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332174

RESUMO

How multicellular organisms assess and control their size is a fundamental question in biology, yet the molecular and genetic mechanisms that control organ or organism size remain largely unsolved. The freshwater polyp Hydra demonstrates a high capacity to adapt its body size to different temperatures. Here we identify the molecular mechanisms controlling this phenotypic plasticity and show that temperature-induced cell number changes are controlled by Wnt- and TGF-ß signaling. Further we show that insulin-like peptide receptor (INSR) and forkhead box protein O (FoxO) are important genetic drivers of size determination controlling the same developmental regulators. Thus, environmental and genetic factors directly affect developmental mechanisms in which cell number is the strongest determinant of body size. These findings identify the basic mechanisms as to how size is regulated on an organismic level and how phenotypic plasticity is integrated into conserved developmental pathways in an evolutionary informative model organism.


Assuntos
Tamanho Corporal/fisiologia , Hydra/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Tamanho Corporal/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Hydra/genética , Hydra/crescimento & desenvolvimento , Insulina/metabolismo , Receptor de Insulina/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/genética , Temperatura , Fator de Crescimento Transformador beta/genética , Via de Sinalização Wnt/genética
13.
Front Microbiol ; 9: 629, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29666616

RESUMO

The aging process is considered to be the result of accumulating cellular deterioration in an individual organism over time. It can be affected by the combined influence of genetic, epigenetic, and environmental factors including life-style-associated events. In the non-senescent freshwater polyp Hydra, one of the classical model systems for evolutionary developmental biology and regeneration, transcription factor FoxO modulates both stem cell proliferation and innate immunity. This provides strong support for the role of FoxO as a critical rate-of-aging regulator. However, how environmental factors interact with FoxO remains unknown. Here, we find that deficiency in FoxO signaling in Hydra leads to dysregulation of antimicrobial peptide expression and that FoxO loss-of-function polyps are impaired in selection for bacteria resembling the native microbiome and more susceptible to colonization of foreign bacteria. These findings reveal a key role of FoxO signaling in the communication between host and microbiota and embed the evolutionary conserved longevity factor FoxO into the holobiont concept.

14.
Sci Rep ; 7(1): 15937, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162937

RESUMO

Spontaneous contractile activity, such as gut peristalsis, is ubiquitous in animals and is driven by pacemaker cells. In humans, disruption of the contraction pattern leads to gastrointestinal conditions, which are also associated with gut microbiota dysbiosis. Spontaneous contractile activity is also present in animals lacking gastrointestinal tract. Here we show that spontaneous body contractions in Hydra are modulated by symbiotic bacteria. Germ-free animals display strongly reduced and less regular contraction frequencies. These effects are partially restored by reconstituting the natural microbiota. Moreover, soluble molecule(s) produced by symbiotic bacteria may be involved in contraction frequency modulation. As the absence of bacteria does not impair the contractile ability itself, a microbial effect on the pacemakers seems plausible. Our findings indicate that the influence of bacteria on spontaneous contractile activity is present in the early-branching cnidarian hydra as well as in Bilateria, and thus suggest an evolutionary ancient origin of interaction between bacteria and metazoans, opening a window into investigating the roots of human motility disorders.


Assuntos
Microbioma Gastrointestinal , Hydra/microbiologia , Hydra/fisiologia , Animais , Comportamento Animal , Vida Livre de Germes , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA