Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Hum Brain Mapp ; 45(2): e26602, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339906

RESUMO

Magnetoencephalography (MEG) recordings are often contaminated by interference that can exceed the amplitude of physiological brain activity by several orders of magnitude. Furthermore, the activity of interference sources may spatially extend (known as source leakage) into the activity of brain signals of interest, resulting in source estimation inaccuracies. This problem is particularly apparent when using MEG to interrogate the effects of brain stimulation on large-scale cortical networks. In this technical report, we develop a novel denoising approach for suppressing the leakage of interference source activity into the activity representing a brain region of interest. This approach leverages spatial and temporal domain projectors for signal arising from prespecified anatomical regions of interest. We apply this denoising approach to reconstruct simulated evoked response topographies to deep brain stimulation (DBS) in a phantom recording. We highlight the advantages of our approach compared to the benchmark-spatiotemporal signal space separation-and show that it can more accurately reveal brain stimulation-evoked response topographies. Finally, we apply our method to MEG recordings from a single patient with Parkinson's disease, to reveal early cortical-evoked responses to DBS of the subthalamic nucleus.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Encéfalo/fisiologia , Magnetoencefalografia/métodos , Doença de Parkinson/terapia
2.
Sensors (Basel) ; 23(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37514831

RESUMO

The signal space separation (SSS) method is routinely employed in the analysis of multichannel magnetic field recordings (such as magnetoencephalography (MEG) data). In the SSS method, signal vectors are posed as a multipole expansion of the magnetic field, allowing contributions from sources internal and external to a sensor array to be separated via computation of the pseudo-inverse of a matrix of the basis vectors. Although powerful, the standard implementation of the SSS method on MEG systems based on optically pumped magnetometers (OPMs) is unstable due to the approximate parity of the required number of dimensions of the SSS basis and the number of channels in the data. Here we exploit the hierarchical nature of the multipole expansion to perform a stable, iterative implementation of the SSS method. We describe the method and investigate its performance via a simulation study on a 192-channel OPM-MEG helmet. We assess performance for different levels of truncation of the SSS basis and a varying number of iterations. Results show that the iterative method provides stable performance, with a clear separation of internal and external sources.

3.
Neuroimage ; 247: 118818, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34915157

RESUMO

Optically pumped magnetometers (OPMs) developed for magnetoencephalography (MEG) typically operate in the spin-exchange-relaxation-free (SERF) regime and measure a magnetic field component perpendicular to the propagation axis of the optical-pumping photons. The most common type of OPM for MEG employs alkali atoms, e.g. 87Rb, as the sensing element and one or more lasers for preparation and interrogation of the magnetically sensitive states of the alkali atoms ensemble. The sensitivity of the OPM can be greatly enhanced by operating it in the SERF regime, where the alkali atoms' spin exchange rate is much faster than the Larmor precession frequency. The SERF regime accommodates remnant static magnetic fields up to ±5 nT. However, in the presented work, through simulation and experiment, we demonstrate that multi-axis magnetic signals in the presence of small remnant static magnetic fields, not violating the SERF criteria, can introduce significant error terms in OPM's output signal. We call these deterministic errors cross-axis projection errors (CAPE), where magnetic field components of the MEG signal perpendicular to the nominal sensing axis contribute to the OPM signal giving rise to substantial amplitude and phase errors. Furthermore, through simulation, we have discovered that CAPE can degrade localization and calibration accuracy of OPM-based magnetoencephalography (OPM-MEG) systems.


Assuntos
Magnetoencefalografia/instrumentação , Magnetometria/instrumentação , Fenômenos Ópticos , Algoritmos , Simulação por Computador , Desenho de Equipamento , Processamento de Sinais Assistido por Computador
4.
Hum Brain Mapp ; 43(12): 3609-3619, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35429095

RESUMO

The excellent temporal resolution and advanced spatial resolution of magnetoencephalography (MEG) makes it an excellent tool to study the neural dynamics underlying cognitive processes in the developing brain. Nonetheless, a number of challenges exist when using MEG to image infant populations. There is a persistent belief that collecting MEG data with infants presents a number of limitations and challenges that are difficult to overcome. Due to this notion, many researchers either avoid conducting infant MEG research or believe that, in order to collect high-quality data, they must impose limiting restrictions on the infant or the experimental paradigm. In this article, we discuss the various challenges unique to imaging awake infants and young children with MEG, and share general best-practice guidelines and recommendations for data collection, acquisition, preprocessing, and analysis. The current article is focused on methodology that allows investigators to test the sensory, perceptual, and cognitive capacities of awake and moving infants. We believe that such methodology opens the pathway for using MEG to provide mechanistic explanations for the complex behavior observed in awake, sentient, and dynamically interacting infants, thus addressing core topics in developmental cognitive neuroscience.


Assuntos
Encéfalo , Magnetoencefalografia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Criança , Pré-Escolar , Cabeça , Humanos , Lactente , Magnetoencefalografia/métodos
5.
Sensors (Basel) ; 22(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35459044

RESUMO

In this paper, we propose a method to estimate the position, orientation, and gain of a magnetic field sensor using a set of (large) electromagnetic coils. We apply the method for calibrating an array of optically pumped magnetometers (OPMs) for magnetoencephalography (MEG). We first measure the magnetic fields of the coils at multiple known positions using a well-calibrated triaxial magnetometer, and model these discreetly sampled fields using vector spherical harmonics (VSH) functions. We then localize and calibrate an OPM by minimizing the sum of squared errors between the model signals and the OPM responses to the coil fields. We show that by using homogeneous and first-order gradient fields, the OPM sensor parameters (gain, position, and orientation) can be obtained from a set of linear equations with pseudo-inverses of two matrices. The currents that should be applied to the coils for approximating these low-order field components can be determined based on the VSH models. Computationally simple initial estimates of the OPM sensor parameters follow. As a first test of the method, we placed a fluxgate magnetometer at multiple positions and estimated the RMS position, orientation, and gain errors of the method to be 1.0 mm, 0.2°, and 0.8%, respectively. Lastly, we calibrated a 48-channel OPM array. The accuracy of the OPM calibration was tested by using the OPM array to localize magnetic dipoles in a phantom, which resulted in an average dipole position error of 3.3 mm. The results demonstrate the feasibility of using electromagnetic coils to calibrate and localize OPMs for MEG.


Assuntos
Encéfalo , Magnetoencefalografia , Encéfalo/fisiologia , Calibragem , Fenômenos Eletromagnéticos , Campos Magnéticos , Magnetoencefalografia/métodos
6.
Neuroimage ; 216: 116788, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32348908

RESUMO

How the human brain uses self-generated auditory information during speech production is rather unsettled. Current theories of language production consider a feedback monitoring system that monitors the auditory consequences of speech output and an internal monitoring system, which makes predictions about the auditory consequences of speech before its production. To gain novel insights into underlying neural processes, we investigated the coupling between neuromagnetic activity and the temporal envelope of the heard speech sounds (i.e., cortical tracking of speech) in a group of adults who 1) read a text aloud, 2) listened to a recording of their own speech (i.e., playback), and 3) listened to another speech recording. Reading aloud was here used as a particular form of speech production that shares various processes with natural speech. During reading aloud, the reader's brain tracked the slow temporal fluctuations of the speech output. Specifically, auditory cortices tracked phrases (<1 â€‹Hz) but to a lesser extent than during the two speech listening conditions. Also, the tracking of words (2-4 â€‹Hz) and syllables (4-8 â€‹Hz) occurred at parietal opercula during reading aloud and at auditory cortices during listening. Directionality analyses were then used to get insights into the monitoring systems involved in the processing of self-generated auditory information. Analyses revealed that the cortical tracking of speech at <1 â€‹Hz, 2-4 â€‹Hz and 4-8 â€‹Hz is dominated by speech-to-brain directional coupling during both reading aloud and listening, i.e., the cortical tracking of speech during reading aloud mainly entails auditory feedback processing. Nevertheless, brain-to-speech directional coupling at 4-8 â€‹Hz was enhanced during reading aloud compared with listening, likely reflecting the establishment of predictions about the auditory consequences of speech before production. These data bring novel insights into how auditory verbal information is tracked by the human brain during perception and self-generation of connected speech.


Assuntos
Mapeamento Encefálico/métodos , Magnetoencefalografia/métodos , Neocórtex/fisiologia , Psicolinguística , Leitura , Percepção da Fala/fisiologia , Fala/fisiologia , Adulto , Córtex Auditivo/fisiologia , Feminino , Humanos , Masculino , Lobo Parietal/fisiologia , Adulto Jovem
7.
Dev Sci ; 21(5): e12651, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29333688

RESUMO

There is growing interest concerning the ways in which the human body, both one's own and that of others, is represented in the developing human brain. In two experiments with 7-month-old infants, we employed advances in infant magnetoencephalography (MEG) brain imaging to address novel questions concerning body representations in early development. Experiment 1 evaluated the spatiotemporal organization of infants' brain responses to being touched. A punctate touch to infants' hands and feet produced significant activation in the hand and foot areas of contralateral primary somatosensory cortex as well as in other parietal and frontal areas. Experiment 2 explored infant brain responses to visually perceiving another person's hand or foot being touched. Results showed significant activation in early visual regions and also in regions thought to be involved in multisensory body and self-other processing. Furthermore, observed touch of the hand and foot activated the infant's own primary somatosensory cortex, although less consistently than felt touch. These findings shed light on aspects of early social cognition, including action imitation, which may build, at least in part, on infant neural representations that map equivalences between the bodies of self and other.


Assuntos
Pé/fisiologia , Mãos/fisiologia , Percepção do Tato/fisiologia , Tato/fisiologia , Percepção Visual/fisiologia , Mapeamento Encefálico , Emoções , Feminino , Humanos , Lactente , Magnetoencefalografia , Masculino , Córtex Somatossensorial/fisiologia
8.
Cereb Cortex ; 27(1): 54-67, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28316456

RESUMO

Deep brain stimulation of the pedunculopontine nucleus and surrounding region (PPNR) is a novel treatment strategy for gait freezing in Parkinson's disease (PD). However, clinical results have been variable, in part because of the paucity of functional information that might help guide selection of the optimal surgical target. In this study, we use simultaneous magnetoencephalography and local field recordings from the PPNR in seven PD patients, to characterize functional connectivity with distant brain areas at rest. The PPNR was preferentially coupled to brainstem and cingulate regions in the alpha frequency (8-12 Hz) band and to the medial motor strip and neighboring areas in the beta (18-33 Hz) band. The distribution of coupling also depended on the vertical distance of the electrode from the pontomesencephalic line: most effects being greatest in the middle PPNR, which may correspond to the caudal pars dissipata of the pedunculopontine nucleus. These observations confirm the crucial position of the PPNR as a functional node between cortical areas such as the cingulate/ medial motor strip and other brainstem nuclei, particularly in the dorsal pons. In particular they suggest a special role for the middle PPNR as this has the greatest functional connectivity with other brain regions.


Assuntos
Encéfalo/fisiopatologia , Doença de Parkinson/fisiopatologia , Núcleo Tegmental Pedunculopontino/fisiopatologia , Idoso , Ritmo alfa , Ritmo beta , Giro do Cíngulo/fisiopatologia , Humanos , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiopatologia , Vias Neurais/fisiopatologia
9.
Dev Sci ; 20(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27041494

RESUMO

Language experience shapes infants' abilities to process speech sounds, with universal phonetic discrimination abilities narrowing in the second half of the first year. Brain measures reveal a corresponding change in neural discrimination as the infant brain becomes selectively sensitive to its native language(s). Whether and how bilingual experience alters the transition to native language specific phonetic discrimination is important both theoretically and from a practical standpoint. Using whole head magnetoencephalography (MEG), we examined brain responses to Spanish and English syllables in Spanish-English bilingual and English monolingual 11-month-old infants. Monolingual infants showed sensitivity to English, while bilingual infants were sensitive to both languages. Neural responses indicate that the dual sensitivity of the bilingual brain is achieved by a slower transition from acoustic to phonetic sound analysis, an adaptive and advantageous response to increased variability in language input. Bilingual neural responses extend into the prefrontal and orbitofrontal cortex, which may be related to their previously described bilingual advantage in executive function skills. A video abstract of this article can be viewed at: https://youtu.be/TAYhj-gekqw.


Assuntos
Multilinguismo , Percepção da Fala/fisiologia , Função Executiva/fisiologia , Feminino , Humanos , Lactente , Magnetoencefalografia , Masculino , Fonética , Córtex Pré-Frontal/fisiologia
10.
Brain Topogr ; 30(2): 172-181, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27696246

RESUMO

Unlike EEG sensors, which are attached to the head, MEG sensors are located outside the head surface on a fixed external device. Subject head movements during acquisition thus distort the magnetic field distributions measured by the sensors. Previous studies have looked at the effect of head movements, but no study has comprehensively looked at the effect of head movements across age groups, particularly in infants. Using MEG recordings from subjects ranging in age from 3 months through adults, here we first quantify the variability in head position as a function of age group. We then combine these measured head movements with brain activity simulations to determine how head movements bias source localization from sensor magnetic fields measured during movement. We find that large amounts of head movement, especially common in infant age groups, can result in large localization errors. We then show that proper application of head movement compensation techniques can restore localization accuracy to pre-movement levels. We also find that proper noise covariance estimation (e.g., during the baseline period) is important to minimize localization bias following head movement compensation. Our findings suggest that head position measurement during acquisition and compensation during analysis is recommended for researchers working with subject populations or age groups that could have substantial head movements. This is especially important in infant MEG studies.


Assuntos
Mapeamento Encefálico/métodos , Movimentos da Cabeça/fisiologia , Magnetoencefalografia/métodos , Adolescente , Adulto , Fatores Etários , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Adulto Jovem
11.
Curr Biol ; 34(8): 1731-1738.e3, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38593800

RESUMO

In face-to-face interactions with infants, human adults exhibit a species-specific communicative signal. Adults present a distinctive "social ensemble": they use infant-directed speech (parentese), respond contingently to infants' actions and vocalizations, and react positively through mutual eye-gaze and smiling. Studies suggest that this social ensemble is essential for initial language learning. Our hypothesis is that the social ensemble attracts attentional systems to speech and that sensorimotor systems prepare infants to respond vocally, both of which advance language learning. Using infant magnetoencephalography (MEG), we measure 5-month-old infants' neural responses during live verbal face-to-face (F2F) interaction with an adult (social condition) and during a control (nonsocial condition) in which the adult turns away from the infant to speak to another person. Using a longitudinal design, we tested whether infants' brain responses to these conditions at 5 months of age predicted their language growth at five future time points. Brain areas involved in attention (right hemisphere inferior frontal, right hemisphere superior temporal, and right hemisphere inferior parietal) show significantly higher theta activity in the social versus nonsocial condition. Critical to theory, we found that infants' neural activity in response to F2F interaction in attentional and sensorimotor regions significantly predicted future language development into the third year of life, more than 2 years after the initial measurements. We develop a view of early language acquisition that underscores the centrality of the social ensemble, and we offer new insight into the neurobiological components that link infants' language learning to their early brain functioning during social interaction.


Assuntos
Encéfalo , Desenvolvimento da Linguagem , Magnetoencefalografia , Interação Social , Humanos , Lactente , Masculino , Feminino , Encéfalo/fisiologia , Atenção/fisiologia , Fala/fisiologia
12.
Brain Res Bull ; 212: 110958, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38677559

RESUMO

Education sculpts specialized neural circuits for skills like reading that are critical to success in modern society but were not anticipated by the selective pressures of evolution. Does the emergence of brain regions that selectively process novel visual stimuli like words occur at the expense of cortical representations of other stimuli like faces and objects? "Neuronal Recycling" predicts that learning to read should enhance the response to words in ventral occipitotemporal cortex (VOTC) and decrease the response to other visual categories such as faces and objects. To test this hypothesis, and more broadly to understand the changes that are induced by the early stages of literacy instruction, we conducted a randomized controlled trial with pre-school children (five years of age). Children were randomly assigned to intervention programs focused on either reading skills or oral language skills and magnetoencephalography (MEG) data collected before and after the intervention was used to measure visual responses to images of text, faces, and objects. We found that being taught reading versus oral language skills induced different patterns of change in category-selective regions of visual cortex, but that there was not a clear tradeoff between the response to words versus other categories. Within a predefined region of VOTC corresponding to the visual word form area (VWFA) we found that the relative amplitude of responses to text, faces, and objects changed, but increases in the response to words were not linked to decreases in the response to faces or objects. How these changes play out over a longer timescale is still unknown but, based on these data, we can surmise that high-level visual cortex undergoes rapid changes as children enter school and begin establishing new skills like literacy.


Assuntos
Magnetoencefalografia , Leitura , Córtex Visual , Humanos , Córtex Visual/fisiologia , Masculino , Feminino , Magnetoencefalografia/métodos , Pré-Escolar , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Aprendizagem/fisiologia , Mapeamento Encefálico
13.
Phys Med Biol ; 68(17)2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37385260

RESUMO

Objective.Our objective is to formulate the problem of the magnetoencephalographic (MEG) sensor array design as a well-posed engineering problem of accurately measuring the neuronal magnetic fields. This is in contrast to the traditional approach that formulates the sensor array design problem in terms of neurobiological interpretability the sensor array measurements.Approach.We use the vector spherical harmonics (VSH) formalism to define a figure-of-merit for an MEG sensor array. We start with an observation that, under certain reasonable assumptions, any array ofmperfectly noiseless sensors will attain exactly the same performance, regardless of the sensors' locations and orientations (with the exception of a negligible set of singularly bad sensor configurations). We proceed to the conclusion that under the aforementioned assumptions, the only difference between different array configurations is the effect of (sensor) noise on their performance. We then propose a figure-of-merit that quantifies, with a single number, how much the sensor array in question amplifies the sensor noise.Main results.We derive a formula for intuitively meaningful, yet mathematically rigorous figure-of-merit that summarizes how desirable a particular sensor array design is. We demonstrate that this figure-of-merit is well-behaved enough to be used as a cost function for a general-purpose nonlinear optimization methods such as simulated annealing. We also show that sensor array configurations obtained by such optimizations exhibit properties that are typically expected of 'high-quality' MEG sensor arrays, e.g. high channel information capacity.Significance.Our work paves the way toward designing better MEG sensor arrays by isolating the engineering problem of measuring the neuromagnetic fields out of the bigger problem of studying brain function through neuromagnetic measurements.


Assuntos
Encéfalo , Magnetoencefalografia , Encéfalo/fisiologia , Magnetoencefalografia/métodos , Algoritmos
14.
Neuroimage Clin ; 38: 103422, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37163912

RESUMO

Methylmercury pollution is a global problem, and Minamata disease (MD) is a stark reminder that exposure to methylmercury can cause irreversible neurological damage. A "glove and stocking type" sensory disturbance due to injured primary sensory cortex (SI) (central somatosensory disturbance) is the most common neurologic sign in MD. As this sign is also prevalent in those with polyneuropathy, we aimed to develop an objective assessment for detecting central somatosensory disturbances in cases of chronic MD. We selected 289 healthy volunteers and 42 patients with MD. We recorded the sensory nerve action potentials (SNAPs) and somatosensory evoked magnetic fields (SEFs) to median nerve stimulation with magnetoencephalography. Single-trial epochs were classified into three categories (N20m, non-response, and P20m epochs) based on the cross-correlation between averaged sensor SEFs and individual epochs. We assessed SI responses (the appearance rate of P20m [P20m rate] and non-response epochs [non-response rate]) and early somatosensory cortical processing (N20m amplitude, reproducibility of N20m in single-trial responses [cross-correlation value], and induced gamma-band oscillations of the SI [gamma response] of single epochs excluding non-response epochs). Receiver operating characteristic curve analyses were used to examine the diagnostic accuracy of each parameter. We found that SNAPs exerted a marginal effect on the N20m. The N20m amplitude, cross-correlation value, and gamma response were significantly reduced in the MD group on either side (p < 0.0001), suggestive of altered early somatosensory cortical processing. Interestingly, the P20m rate and non-response rate were significantly increased in the MD group on either side (p < 0.0001), thereby suggesting impaired SI responses. Notably, P20m and absent N20m peaks were observed in 6 and 11 patients with MD, respectively, which may be attributed to increased numbers of P20m epochs. The cross-correlation value exhibited the highest correlation with the P20m rate or non-response rate. Thus, reduced reproducibility of N20m may play an important role in chronic MD. The cross-correlation value exhibited the highest correlation with the gamma response for both SI parameters in early somatosensory cortical processing. The area under the curve was > 0.77 (range: 0.77-0.79) for all parameters. Their confidence intervals overlapped with each other; thus, each SEF parameter likely had an approximately equivalent discrimination ability. In conclusion, chronic MD is characterized by impaired SI responses and alterations in early somatosensory cortical processing. Thus, single-trial neuromagnetic analysis of somatosensory function may be useful for detecting central somatosensory disturbance and elucidating the relevant pathophysiological mechanisms even in the context of chronic MD.


Assuntos
Compostos de Metilmercúrio , Humanos , Estimulação Elétrica , Potenciais Somatossensoriais Evocados/fisiologia , Magnetoencefalografia , Nervo Mediano/fisiologia , Reprodutibilidade dos Testes , Córtex Somatossensorial
15.
ArXiv ; 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37396603

RESUMO

In magnetoencephalography, linear minimum norm inverse methods are commonly employed when a solution with minimal a priori assumptions is desirable. These methods typically produce spatially extended inverse solutions, even when the generating source is focal. Various reasons have been proposed for this effect, including intrisic properties of the minimum norm solution, effects of regularization, noise, and limitations of the sensor array. In this work, we express the lead field in terms of the magnetostatic multipole expansion and develop the minimum-norm inverse in the multipole domain. We demonstrate the close relationship between numerical regularization and explicit suppression of spatial frequencies of the magnetic field. We show that the spatial sampling capabilities of the sensor array and regularization together determine the resolution of the inverse solution. For the purposes of stabilizing the inverse estimate, we propose the multipole transformation of the lead field as an alternative or complementary means to purely numerical regularization.

16.
Phys Med Biol ; 68(9)2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37040782

RESUMO

Objectives.We aim to investigate the effects of head model inaccuracies on signal and source reconstruction accuracies for various sensor array distances to the head. This allows for the assessment of the importance of head modeling for next-generation magnetoencephalography (MEG) sensors, optically-pumped magnetometers (OPM).Approach.A 1-shell boundary element method (BEM) spherical head model with 642 vertices of radius 9 cm and conductivity of 0.33 S m-1was defined. The vertices were then randomly perturbed radially up to 2%, 4%, 6%, 8% and 10% of the radius. For each head perturbation case, the forward signal was calculated for dipolar sources located at 2 cm, 4 cm, 6 cm and 8 cm from the origin (center of the sphere), and for a 324 sensor array located at 10 cm to 15 cm from the origin. Equivalent current dipole (ECD) source localization was performed for each of these forward signals. The signal for each perturbed spherical head case was then analyzed in the spatial frequency domain, and the signal and ECD errors were quantified relative to the unperturbed case.Main results.In the noiseless and high signal-to-noise ratio (SNR) case of approximately ≥6 dB, inaccuracies in our spherical BEM head conductor models lead to increased signal and ECD inaccuracies when sensor arrays are placed closer to the head. This is true especially in the case of deep and superficial sources. In the noisy case however, the higher SNR for closer sensor arrays allows for an improved ECD fit and outweighs the effects of head geometry inaccuracies.Significance.OPMs may be placed directly on the head, as opposed to the more commonly used superconducting quantum interference device sensors which must be placed a few centimeters away from the head. OPMs thus allow for signals of higher spatial resolution to be captured, resulting in potentially more accurate source localizations. Our results suggest that an increased emphasis on accurate head modeling for OPMs may be necessary to fully realize its improved source localization potential.


Assuntos
Cabeça , Magnetoencefalografia , Condutividade Elétrica , Razão Sinal-Ruído , Encéfalo
17.
J Neural Eng ; 20(5)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37748476

RESUMO

Objective.Optically pumped magnetometers (OPMs) are emerging as a near-room-temperature alternative to superconducting quantum interference devices (SQUIDs) for magnetoencephalography (MEG). In contrast to SQUIDs, OPMs can be placed in a close proximity to subject's scalp potentially increasing the signal-to-noise ratio and spatial resolution of MEG. However, experimental demonstrations of these suggested benefits are still scarce. Here, to compare a 24-channel OPM-MEG system to a commercial whole-head SQUID system in a data-driven way, we quantified their performance in classifying single-trial evoked responses.Approach.We measured evoked responses to three auditory tones in six participants using both OPM- and SQUID-MEG systems. We performed pairwise temporal classification of the single-trial responses with linear discriminant analysis as well as multiclass classification with both EEGNet convolutional neural network and xDAWN decoding.Main results.OPMs provided higher classification accuracies than SQUIDs having a similar coverage of the left hemisphere of the participant. However, the SQUID sensors covering the whole helmet had classification scores larger than those of OPMs for two of the tone pairs, demonstrating the benefits of a whole-head measurement.Significance.The results demonstrate that the current OPM-MEG system provides high-quality data about the brain with room for improvement for high bandwidth non-invasive brain-computer interfacing.

18.
Epilepsia ; 53(9): 1649-57, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22780219

RESUMO

PURPOSE: Ictal video-electroencephalography (EEG) is commonly used to establish ictal onset-zone location. Recently software development has enabled systematic studies of ictal magnetoencephalography (MEG). In this article, we evaluate the ability of ictal MEG signals to localize the seizure-onset zone. METHODS: Twenty-six patients underwent ictal MEG and epilepsy surgery. Prediction of seizure-onset zone by ictal and interictal MEG was retrospectively compared with ictal-onset area found by intracranial EEG in 12 patients. The specificity and sensitivity of the prediction were calculated at hemisphere-lobe (HL) and at hemisphere-lobe-surface (HLS) levels. KEY FINDINGS: The sensitivity of ictal MEG source localization was 0.958 on HL and 0.706 on HLS levels, and its specificity was 0.900 on HL and 0.731 on HLS levels. The interictal MEG dipole cluster, defined as >10 dipoles on one lobar surface, had sensitivity of 0.400 and specificity of 0.769. Ictal MEG was equally sensitive and specific on dorsolateral and nondorsolateral neocortical surfaces up to a depth of 4 cm from the scalp. SIGNIFICANCE: Sources of ictal-onset MEG signals and interictal dipole clusters are essentially equally specific in estimation of the ictal-onset zone on lobar surface resolution, but ictal MEG is more sensitive. On the lobe resolution, ictal MEG estimates ictal-onset zone with high sensitivity and specificity.


Assuntos
Eletroencefalografia/normas , Magnetoencefalografia/normas , Convulsões/diagnóstico , Convulsões/fisiopatologia , Adolescente , Adulto , Criança , Pré-Escolar , Eletroencefalografia/métodos , Feminino , Humanos , Magnetoencefalografia/métodos , Masculino , Valor Preditivo dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade , Adulto Jovem
19.
Artigo em Inglês | MEDLINE | ID: mdl-35162202

RESUMO

Research on children and adults with developmental dyslexia-a specific difficulty in learning to read and spell-suggests that phonological deficits in dyslexia are linked to basic auditory deficits in temporal sampling. However, it remains undetermined whether such deficits are already present in infancy, especially during the sensitive period when the auditory system specializes in native phoneme perception. Because dyslexia is strongly hereditary, it is possible to examine infants for early predictors of the condition before detectable symptoms emerge. This study examines low-level auditory temporal sampling in infants at risk for dyslexia across the sensitive period of native phoneme learning. Using magnetoencephalography (MEG), we found deficient auditory sampling at theta in at-risk infants at both 6 and 12 months, indicating atypical auditory sampling at the syllabic rate in those infants across the sensitive period for native-language phoneme learning. This interpretation is supported by our additional finding that auditory sampling at theta predicted later vocabulary comprehension, nonlinguistic communication and the ability to combine words. Our results indicate a possible early marker of risk for dyslexia.


Assuntos
Dislexia , Percepção da Fala , Adulto , Criança , Dislexia/diagnóstico , Dislexia/epidemiologia , Humanos , Lactente , Idioma , Desenvolvimento da Linguagem , Leitura
20.
Front Neurol ; 13: 827529, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401424

RESUMO

We discuss specific challenges and solutions in infant MEG, which is one of the most technically challenging areas of MEG studies. Our results can be generalized to a variety of challenging scenarios for MEG data acquisition, including clinical settings. We cover a wide range of steps in pre-processing, including movement compensation, suppression of magnetic interference from sources inside and outside the magnetically shielded room, suppression of specific physiological artifact components such as cardiac artifacts. In the assessment of the outcome of the pre-processing algorithms, we focus on comparing signal representation before and after pre-processing and discuss the importance of the different components of the main processing steps. We discuss the importance of taking the noise covariance structure into account in inverse modeling and present the proper treatment of the noise covariance matrix to accurately reflect the processing that was applied to the data. Using example cases, we investigate the level of source localization error before and after processing. One of our main findings is that statistical metrics of source reconstruction may erroneously indicate that the results are reliable even in cases where the data are severely distorted by head movements. As a consequence, we stress the importance of proper signal processing in infant MEG.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA