RESUMO
BACKGROUND: Systemic and chronic inflammatory conditions in patients with breast cancer have been associated with reduced patient survival and increased breast cancer aggressiveness. This paper characterizes the role of an inflammatory cytokine, oncostatin M (OSM), in the preintravasation aspects of breast cancer metastasis. METHODS: OSM expression levels in human breast cancer tissue samples were assessed using tissue microarrays, and expression patterns based on clinical stage were assessed. To determine the in vivo role of OSM in breast cancer metastasis to the lung, we used three orthotopic breast cancer mouse models, including a syngeneic 4T1.2 mouse mammary cancer model, the MDA-MB-231 human breast cancer xenograft model, and an OSM-knockout (OSM-KO) mouse model. Progression of metastatic disease was tracked by magnetic resonance imaging and bioluminescence imaging. Endpoint analysis included circulating tumor cell (CTC) counts, lung metastatic burden analysis by qPCR, and ex vivo bioluminescence imaging. RESULTS: Using tissue microarrays, we found that tumor cell OSM was expressed at the highest levels in ductal carcinoma in situ. This finding suggests that OSM may function during the earlier steps of breast cancer metastasis. In mice bearing MDA-MB-231-Luc2 xenograft tumors, peritumoral injection of recombinant human OSM not only increased metastases to the lung and decreased survival but also increased CTC numbers. To our knowledge, this is the first time that a gp130 family inflammatory cytokine has been shown to directly affect CTC numbers. Using a 4T1.2 syngeneic mouse model of breast cancer, we found that mice bearing 4T1.2-shOSM tumors with knocked down tumor expression of OSM had reduced CTCs, decreased lung metastatic burden, and increased survival compared with mice bearing control tumors. CTC numbers were further reduced in OSM-KO mice bearing the same tumors, demonstrating the importance of both paracrine- and autocrine-produced OSM in this process. In vitro studies further supported the hypothesis that OSM promotes preintravasation aspects of cancer metastasis, because OSM induced both 4T1.2 tumor cell detachment and migration. CONCLUSIONS: Collectively, our findings suggest that OSM plays a crucial role in the early steps of metastatic breast cancer progression, resulting in increased CTCs and lung metastases as well as reduced survival. Therefore, early therapeutic inhibition of OSM in patients with breast cancer may prevent breast cancer metastasis.
Assuntos
Neoplasias da Mama/genética , Neoplasias Pulmonares/genética , Oncostatina M/genética , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos , Metástase Neoplásica , Células Neoplásicas Circulantes/patologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Chondrocytes of the growth plate undergo apoptosis during the process of endochondral ossification, as well as during the progression of osteoarthritis. Although the regulation of this process is not completely understood, alterations in the precisely orchestrated programmed cell death during development can have catastrophic results, as exemplified by several chondrodystrophies which are frequently accompanied by early onset osteoarthritis. Understanding the mechanisms that underlie chondrocyte apoptosis during endochondral ossification in the growth plate has the potential to impact the development of therapeutic applications for chondrodystrophies and associated early onset osteoarthritis. In recent years, several chondrodysplasias and collagenopathies have been recognized as protein-folding diseases that lead to endoplasmic reticulum stress, endoplasmic reticulum associated degradation, and the unfolded protein response. Under conditions of prolonged endoplasmic reticulum stress in which the protein folding load outweighs the folding capacity of the endoplasmic reticulum, cellular dysfunction and death often occur. However, unfolded protein response (UPR) signaling is also required for the normal maturation of chondrocytes and osteoblasts. Understanding how UPR signaling may contribute to cartilage pathophysiology is an essential step toward therapeutic modulation of skeletal disorders that lead to osteoarthritis.
Assuntos
Apoptose , Cartilagem/metabolismo , Cartilagem/patologia , Estresse do Retículo Endoplasmático , Osteoartrite/metabolismo , Osteoartrite/patologia , Resposta a Proteínas não Dobradas , Idade de Início , Animais , Artrite/etiologia , Artrite/metabolismo , Artrite/patologia , Proteínas Morfogenéticas Ósseas/metabolismo , Calcificação Fisiológica , Condrócitos/metabolismo , Condrócitos/patologia , Condrogênese , Colágeno/genética , Colágeno/metabolismo , Doenças do Tecido Conjuntivo/etiologia , Doenças do Tecido Conjuntivo/metabolismo , Doenças do Tecido Conjuntivo/patologia , Retículo Endoplasmático/metabolismo , Perda Auditiva Neurossensorial/etiologia , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/patologia , Humanos , Terapia de Alvo Molecular , Osteoartrite/epidemiologia , Osteoartrite/etiologia , Osteoblastos/metabolismo , Descolamento Retiniano/etiologia , Descolamento Retiniano/metabolismo , Descolamento Retiniano/patologiaRESUMO
Oncostatin M (OSM) is an interleukin-6-like inflammatory cytokine reported to play a role in a number of pathological processes including cancer. Full-length OSM is expressed as a 26 kDa protein that can be proteolytically processed into 24 kDa and 22 kDa forms via removal of C-terminal peptides. In this study, we examined both the ability of OSM to bind to the extracellular matrix (ECM) and the activity of immobilized OSM on human breast carcinoma cells. OSM was observed to bind to ECM proteins collagen types I and XI, laminin, and fibronectin in a pH-dependent fashion, suggesting a role for electrostatic bonds that involves charged amino acids of both the ECM and OSM. The C-terminal extensions of 24 kDa and 26 kDa OSM, which contains six and thirteen basic amino acids, respectively, enhanced electrostatic binding to ECM at pH 6.5-7.5 when compared to 22 kDa OSM. The highest levels of OSM binding to ECM, though, were observed at acidic pH 5.5, where all forms of OSM bound to ECM proteins to a similar extent. This indicates additional electrostatic binding properties independent of the OSM C-terminal extensions. The reducing agent dithiothreitol also inhibited the binding of OSM to ECM suggesting a role for disulfide bonds in OSM immobilization. OSM immobilized to ECM was protected from cleavage by tumor-associated proteases and maintained activity following incubation at acidic pH for extended periods of time. Importantly, immobilized OSM remained biologically active and was able to induce and sustain the phosphorylation of STAT3 in T47D and ZR-75-1 human breast cancer cells over prolonged periods, as well as increase levels of STAT1 and STAT3 protein expression. Immobilized OSM also induced epithelial-mesenchymal transition-associated morphological changes in T47D cells. Taken together, these data indicate that OSM binds to ECM in a bioactive state that may have important implications for the development of chronic inflammation and tumor metastasis.
Assuntos
Matriz Extracelular/metabolismo , Inflamação/metabolismo , Metástase Neoplásica/fisiopatologia , Oncostatina M/metabolismo , Neoplasias da Mama , Técnicas de Cocultura , Colágeno Tipo I/metabolismo , Colágeno Tipo XI/metabolismo , Ditiotreitol/farmacologia , Transição Epitelial-Mesenquimal , Feminino , Fibronectinas/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Laminina/metabolismo , Fosforilação , Ligação Proteica , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de SinaisRESUMO
BACKGROUND/OBJECTIVES: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social communication difficulties and restricted repetitive behaviors or interests. Applied behavior analysis (ABA) has been shown to significantly improve outcomes for individuals on the autism spectrum. However, challenges regarding access, cost, and provider shortages remain obstacles to treatment delivery. To this end, parents were trained as parent behavior technicians (pBTs), improving access to ABA, and empowering parents to provide ABA treatment in their own homes. We hypothesized that patients diagnosed with severe ASD would achieve the largest gains in overall success rates toward skill acquisition in comparison to patients diagnosed with mild or moderate ASD. Our secondary hypothesis was that patients with comprehensive treatment plans (>25-40 hours/week) would show greater gains in skill acquisition than those with focused treatment plans (less than or equal to 25 hours/week). Methods: This longitudinal, retrospective chart review evaluated data from 243 patients aged two to 18 years who received at least three months of ABA within our pBT treatment delivery model. Patients were stratified by utilization of prescribed ABA treatment, age, ASD severity (per the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition), and treatment plan type (comprehensive vs. focused). Patient outcomes were assessed by examining success rates in acquiring skills, both overall and in specific focus areas (communication, emotional regulation, executive functioning, and social skills). RESULTS: Patients receiving treatment within the pBT model demonstrated significant progress in skill acquisition both overall and within specific focus areas, regardless of cohort stratification. Patients with severe ASD showed greater overall skill acquisition gains than those with mild or moderate ASD. In addition, patients with comprehensive treatment plans showed significantly greater gains than those with focused treatment plans. CONCLUSION: The pBT model achieved both sustained levels of high treatment utilization and progress toward patient goals. Patients showed significant gains in success rates of skill acquisition both overall and in specific focus areas, regardless of their level of treatment utilization. This study reveals that our pBT model of ABA treatment delivery leads to consistent improvements in communication, emotional regulation, executive functioning, and social skills across patients on the autism spectrum, particularly for those with more severe symptoms and those following comprehensive treatment plans.
RESUMO
Type 2 diabetes (T2D) is a global health concern with increasing prevalence. Comorbid hypothyroidism (HT) exacerbates kidney, cardiac, neurological and other complications of T2D; these risks can be mitigated pharmacologically upon detecting HT. The current HT standard of care (SOC) screening in T2D is infrequent, delaying HT diagnosis and treatment. We present a first-to-date machine learning algorithm (MLA) clinical decision tool to classify patients as low vs. high risk for developing HT comorbid with T2D; the MLA was developed using readily available patient data from harmonized multinational datasets. The MLA was trained on data from NIH All of US (AoU) and UK Biobank (UKBB) (Combined dataset) and achieved a high negative predictive value (NPV) of 0.989 and an AUROC of 0.762 in the Combined dataset, exceeding AUROCs for the models trained on AoU or UKBB alone (0.666 and 0.622, respectively), indicating that increasing dataset diversity for MLA training improves performance. This high-NPV automated tool can supplement SOC screening and rule out T2D patients with low HT risk, allowing for the prioritization of lab-based testing for at-risk patients. Conversely, an MLA output that designates a patient to be at risk of developing HT allows for tailored clinical management and thereby promotes improved patient outcomes.
RESUMO
BACKGROUND: Tumor cell lines that can be tracked in vivo during tumorigenesis and metastasis provide vital tools for studying the specific cellular mechanisms that mediate these processes as well as investigating therapeutic targets to inhibit them. The goal of this study was to engineer imageable mouse mammary tumor cell lines with discrete propensities to metastasize to bone in vivo. Two novel luciferase expressing cell lines were developed and characterized for use in the study of breast cancer metastasis to bone in a syngeneic mouse model. RESULTS: The 4 T1.2 luc3 and 66c14 luc2 cell lines were shown to have high levels of bioluminescence intensity in vitro and in vivo after orthotopic injection into mouse mammary fat pads. The 4 T1.2 luc3 cell line was found to closely model the sites of metastases seen in human patients including lung, liver, and bone. Specifically, 4 T1.2 luc3 cells demonstrated a high incidence of metastasis to spine, with an ex-vivo BLI intensity three orders of magnitude above the commercially available 4 T1 luc2 cells. 66c14 luc2 cells also demonstrated metastasis to spine, which was lower than that of 4 T1.2 luc3 cells but higher than 4 T1 luc2 cells, in addition to previously unreported metastases in the liver. High osteolytic activity of the 4 T1.2 luc3 cells in vivo in the bone microenvironment was also detected. CONCLUSIONS: The engineered 4 T1.2 luc3 and 66c14 luc2 cell lines described in this study are valuable tools for studying the cellular events moderating the metastasis of breast tumor cells to bone.
RESUMO
Chronic inflammation has been recognized as a risk factor for the development and maintenance of malignant disease. Cytokines such as interleukin-6 (IL-6), oncostatin M (OSM), and interleukin-1 beta (IL-1ß) promote the development of both acute and chronic inflammation while promoting in vitro metrics of breast cancer metastasis. However, anti-IL-6 and anti-IL-1ß therapeutics have not yielded significant results against solid tumors in clinical trials. Here we show that these three cytokines are interrelated in expression. Using the Curtis TCGA™ dataset, we have determined that there is a correlation between expression levels of OSM, IL-6, and IL-1ß and reduced breast cancer patient survival (r = 0.6, p = 2.2 x 10-23). Importantly, we confirm that OSM induces at least a 4-fold increase in IL-6 production from estrogen receptor-negative (ER-) breast cancer cells in a manner that is dependent on STAT3 signaling. Furthermore, OSM induces STAT3 phosphorylation and IL-1ß promotes p65 phosphorylation to synergistically induce IL-6 secretion in ER- MDA-MB-231 and to a lesser extent in ER+ MCF7 human breast cancer cells. Induction may be reduced in the ER+ MCF7 cells due to a previously known suppressive interaction between ER and STAT3. Interestingly, we show in MCF7 cells that ER's interaction with STAT3 is reduced by 50% through both OSM and IL-1ß treatment, suggesting a role for ER in mitigating STAT3-mediated inflammatory cascades. Here, we provide a rationale for a breast cancer treatment regime that simultaneously suppresses multiple targets, as these cytokines possess many overlapping functions that increase metastasis and worsen patient survival.
RESUMO
Breast cancer cell-response to inflammatory cytokines such as interleukin-6 (IL-6) and oncostatin M (OSM) may affect the course of clinical disease in a cancer subtype-dependent manner. Furthermore, vascular endothelial growth factor A (VEGF) secretion induced by IL-6 and OSM may also be subtype-dependent. Utilizing datasets from Oncomine, we show that poor survival of invasive ductal carcinoma (IDC) breast cancer patients is correlated with both high VEGF expression and high cytokine or cytokine receptor expression in tumors. Importantly, epidermal growth factor receptor-negative (HER2-), but not HER2-positive (HER2+), patient survival is significantly lower with high tumor co-expression of VEGF and OSM, OSMRß, IL-6, or IL-6Rα compared to low co-expression. Furthermore, assessment of HER2- breast cancer cells in vitro identified unique signaling differences regulating cytokine-induced VEGF secretion. The levels of VEGF secretion were analyzed by ELISA with siRNAs for hypoxia inducible factor 1 α (HIF1α) and signal transducer and activator of transcription 3 (STAT3). Specifically, we found that estrogen receptor-negative (ER-) MDA-MB-231 cells respond only to OSM through STAT3 signaling, while ER+ T47D cells respond to both OSM and IL-6, though to IL-6 to a lesser extent. Additionally, in the ER+ T47D cells, OSM signals through both STAT3 and HIF1α. These results highlight that the survival of breast cancer patients with high co-expression of VEGF and IL-6 family cytokines is dependent on breast cancer subtype. Thus, the heterogeneity of human breast cancer in relation to IL-6 family cytokines and VEGF may have important implications in clinical treatment options, disease progression, and ultimately patient prognosis.
RESUMO
BACKGROUND: Hormone receptor status in human breast cancer cells is a strong indicator of the aggressiveness of a tumor. Triple negative breast cancers (TNBC) are aggressive, difficult to treat, and contribute to high incidences of metastasis by possessing characteristics such as increased tumor cell migration and a large presence of the transmembrane protein, cluster of differentiation 44 (CD44) on the cell membrane. Estrogen receptor-positive (ER+) cells are less aggressive and do not migrate until undergoing an epithelial-mesenchymal transition (EMT). METHODS: The relationship between EMT and CD44 during metastatic events is assessed by observing changes in EMT markers, tumor cell detachment, and migration following cytokine treatment on both parental and CD44 knockdown human breast tumor cells. RESULTS: ER+ T47D and MCF-7 human breast cancer cells treated with OSM demonstrate increased CD44 expression and CD44 cleavage. Conversely, ER- MDA-MB-231 human breast cancer cells do not show a change in CD44 expression nor undergo EMT in the presence of OSM. In ER+ cells, knockdown expression of CD44 by shRNA did not prevent EMT but did change metastatic processes such as cellular detachment and migration. OSM-induced migration was decreased in both ER+ and ER- cells with shCD44 cells compared to control cells, while the promotion of tumor cell detachment by OSM was decreased in ER+ MCF7-shCD44 cells, as compared to control cells. Interestingly, OSM-induced detachment in ER- MDA-MB-231-shCD44 cells that normally don't detach at significant rates. CONCLUSION: OSM promotes both EMT and tumor cell detachment in ER+ breast cancer cells. Yet, CD44 knockdown did not affect OSM-induced EMT in these cells, while independently decreasing OSM-induced cell detachment. These results suggest that regulation of CD44 by OSM is important for at least part of the metastatic cascade in ER+ breast cancer.
RESUMO
Ovarian cancer is the most fatal gynecological cancer in the USA and the fifth most common cancer-related cause of death in women. Inflammation has been shown to play many roles in ovarian cancer tumor growth, with the proinflammatory cytokine interleukin-6 (IL-6) having been established as a key immunoregulatory cytokine. Ovarian cancer cells continuously secrete cytokines that promote tumorigenicity in both autocrine and paracrine fashions while also receiving signals from the tumor microenvironment (TME). The TME contains many cells including leukocytes and fibroblasts, which respond to proinflammatory cytokines and secrete their own cytokines, which can produce many effects including promotion of chemoresistance, resistance to apoptosis, invasion, angiogenesis by way of overexpression of vascular endothelial growth factor, and promotion of metastatic growth at distant sites. IL-6 and its proinflammatory family members, including oncostatin M, have been found to directly stimulate enhanced invasion of cancer cells through basement membrane degradation caused by the overexpression of matrix metalloproteinases, stimulate promotion of cell cycle, enhance resistance to chemotherapy, and cause epithelial-to-mesenchymal transition (EMT). IL-6 has been shown to activate signaling pathways that lead to tumor proliferation, the most studied of which being the Janus kinase (JAK) and STAT3 pathway. IL-6-induced JAK/STAT activation leads to constitutive activation of STAT3, which has been correlated with enhanced tumor cell growth and resistance to chemotherapy. IL-6 has also been shown to act as a trigger of the EMT, the hypothesized first step in the metastatic cascade. Understanding the important role of IL-6 and its family members' effects on the pathogenesis of ovarian cancer tumor growth and metastasis may lead to more novel treatments, detection methods, and improvement of overall clinical outcomes.
RESUMO
Bone deterioration is a challenge in long-term spaceflight with significant connections to patients experiencing disuse bone loss. Prolonged unloading and radiation exposure, defining characteristics of space travel, have both been associated with changes in inflammatory signaling via IL-6 class cytokines in bone. While there is also evidence for perturbed IL-6 class signaling in spaceflight, there has been scant examination of the connections between microgravity, radiation, and inflammatory stimuli in bone. Our lab and others have shown that the IL-6 class cytokine oncostatin M (OSM) is an important regulator of bone remodeling. We hypothesize that simulated microgravity alters osteoblast OSM signaling, contributing to the decoupling of osteolysis and osteogenesis in bone homeostasis. To test this hypothesis, we induced OSM signaling in murine MC3T3-E1 pre-osteoblast cells cultured in modeled microgravity using a rotating wall vessel bioreactor with and without exposure to radiation typical of a solar particle event. We measured effects on inflammatory signaling, osteoblast activity, and mineralization. Results indicated time dependent interactions among all conditions in the regulation of IL-6 production. Furthermore, OSM induced the transcription of OSM receptor ß, IL 6 receptor α subunits, collagen α1(I), osteocalcin, sclerostin, RANKL, and osteoprotegerin. Measurements of osteoid mineralization suggest that the spatial organization of the osteoblast environment is an important consideration in understanding bone formation. Taken together, these results support a role for altered OSM signaling in the mechanism of microgravity-induced bone loss.
Assuntos
Oncostatina M/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Simulação de Ausência de Peso , Proteínas Adaptadoras de Transdução de Sinal , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Glicoproteínas/genética , Peptídeos e Proteínas de Sinalização Intercelular , Interleucina-6/metabolismo , Camundongos , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Osteoprotegerina/genética , Ligante RANK/genética , Receptores de Interleucina-6/genéticaRESUMO
Stüve-Wiedemann syndrome (STWS; OMIM #610559) is a rare bent-bone dysplasia that includes radiologic bone anomalies, respiratory distress, feeding difficulties, and hyperthermic episodes. STWS usually results in infant mortality, yet some STWS patients survive into and, in some cases, beyond adolescence. STWS is caused by a mutation in the leukemia inhibitory factor receptor (LIFR) gene, which is inherited in an autosomally recessive pattern. Most LIFR mutations resulting in STWS are null mutations which cause instability of the mRNA and prevent the formation of LIFR, impairing the signaling pathway. LIFR signaling usually follows the JAK/STAT3 pathway, and is initiated by several interleukin-6-type cytokines. STWS is managed on a symptomatic basis since there is no treatment currently available.
Assuntos
Citocinas/fisiologia , Exostose Múltipla Hereditária/fisiopatologia , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/fisiologia , Osteocondrodisplasias/fisiopatologia , Exostose Múltipla Hereditária/etiologia , Exostose Múltipla Hereditária/genética , Humanos , Recém-Nascido , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Mutação , Osteocondrodisplasias/etiologia , Osteocondrodisplasias/genética , Transdução de SinaisRESUMO
Oncostatin M (OSM) is an interleukin-6 (IL-6) family cytokine that has been implicated in a number of biological processes including inflammation, hematopoiesis, immune responses, development, and bone homeostasis. Recent evidence suggests that OSM may promote breast tumor invasion and metastasis. We investigated the role of OSM in the formation of bone metastases in vivo using the 4T1.2 mouse mammary tumor model in which OSM expression was knocked down using shRNA (4T1.2-OSM). 4T1.2-OSM cells were injected orthotopically into Balb/c mice, resulting in a greater than 97% decrease in spontaneous metastasis to bone compared to control cells. Intratibial injection of these same 4T1.2-OSM cells also dramatically reduced the osteolytic destruction of trabecular bone volume compared to control cells. Furthermore, in a tumor resection model, mice bearing 4T1.2-OSM tumors showed an increase in survival by a median of 10 days. To investigate the specific cellular mechanisms important for OSM-induced osteolytic metastasis to bone, an in vitro model was developed using the RAW 264.7 preosteoclast cell line co-cultured with 4T1.2 mouse mammary tumor cells. Treatment of co-cultures with OSM resulted in a 3-fold induction of osteoclastogenesis using the TRAP assay. We identified several tumor cell-induced factors including vascular endothelial growth factor, IL-6, and a previously uncharacterized OSM-regulated bone metastasis factor, amphiregulin (AREG), which increased osteoclast differentiation by 4.5-fold. In addition, pretreatment of co-cultures with an anti-AREG neutralizing antibody completely reversed OSM-induced osteoclastogenesis. Our results suggest that one mechanism for OSM-induced osteoclast differentiation is via an AREG autocrine loop, resulting in decreased osteoprotegerin secretion by the 4T1.2 cells. These data provide evidence that OSM might be an important therapeutic target for the prevention of breast cancer metastasis to bone.
RESUMO
Metastatic events to the bone occur frequently in numerous cancer types such as breast, prostate, lung, and renal carcinomas, melanoma, neuroblastoma, and multiple myeloma. Accumulating evidence suggests that the inflammatory cytokine interleukin (IL)-6 is frequently upregulated and is implicated in the ability of cancer cells to metastasize to bone. IL-6 is able to activate various cell signaling cascades that include the STAT (signal transducer and activator of transcription) pathway, the PI3K (phosphatidylinositol-3 kinase) pathway, and the MAPK (mitogen-activated protein kinase) pathway. Activation of these pathways may explain the ability of IL-6 to mediate various aspects of normal and pathogenic bone remodeling, inflammation, cell survival, proliferation, and pro-tumorigenic effects. This review article will discuss the role of IL-6: 1) in bone metabolism, 2) in cancer metastasis to bone, 3) in cancer prognosis, and 4) as potential therapies for metastatic bone cancer.