Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Cell Biochem Funct ; 41(5): 517-541, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37282756

RESUMO

Hyperglycemia, a distinguishing feature of diabetes mellitus that might cause a diabetic foot ulcer (DFU), is an endocrine disorder that affects an extremely high percentage of people. Having a comprehensive understanding of the molecular mechanisms underlying the pathophysiology of diabetic wound healing can help researchers and developers design effective therapeutic strategies to treat the wound healing process in diabetes patients. Using nanoscaffolds and nanotherapeutics with dimensions ranging from 1 to 100 nm represents a state-of-the-art and viable therapeutic strategy for accelerating the wound healing process in diabetic patients, particularly those with DFU. Nanoparticles can interact with biological constituents and infiltrate wound sites owing to their reduced diameter and enhanced surface area. Furthermore, it is noteworthy that they promote the processes of vascularization, cellular proliferation, cell signaling, cell-to-cell interactions, and the formation of biomolecules that are essential for effective wound healing. Nanomaterials possess the ability to effectively transport and deliver various pharmacological agents, such as nucleic acids, growth factors, antioxidants, and antibiotics, to specific tissues, where they can be continuously released and affect the wound healing process in DFU. The present article elucidates the ongoing endeavors in the field of nanoparticle-mediated therapies for the management of DFU.


Assuntos
Diabetes Mellitus , Pé Diabético , Nanopartículas , Humanos , Pé Diabético/tratamento farmacológico , Cicatrização , Peptídeos e Proteínas de Sinalização Intercelular , Nanopartículas/uso terapêutico , Nanotecnologia , Diabetes Mellitus/tratamento farmacológico
2.
Cell Mol Life Sci ; 79(7): 349, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672585

RESUMO

All living beings continue their life by receiving energy and by excreting waste products. In animals, the arteries are the pathways of these transfers to the cells. Angiogenesis, the formation of the arteries by the development of pre-existed parental blood vessels, is a phenomenon that occurs naturally during puberty due to certain physiological processes such as menstruation, wound healing, or the adaptation of athletes' bodies during exercise. Nonetheless, the same life-giving process also occurs frequently in some patients and, conversely, occurs slowly in some physiological problems, such as cancer and diabetes, so inhibiting angiogenesis has been considered to be one of the important strategies to fight these diseases. Accordingly, in tissue engineering and regenerative medicine, the highly controlled process of angiogenesis is very important in tissue repairing. Excessive angiogenesis can promote tumor progression and lack of enough angiogensis can hinder tissue repair. Thereby, both excessive and deficient angiogenesis can be problematic, this review article introduces and describes the types of factors involved in controlling angiogenesis. Considering all of the existing strategies, we will try to lay out the latest knowledge that deals with stimulating/inhibiting the angiogenesis. At the end of the article, owing to the early-reviewed mechanical aspects that overshadow angiogenesis, the strategies of angiogenesis in tissue engineering will be discussed.


Assuntos
Neovascularização Fisiológica , Engenharia Tecidual , Animais , Humanos , Neovascularização Patológica , Medicina Regenerativa , Cicatrização
3.
Mater Lett ; 3312023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38706920

RESUMO

A modular reinforced bone scaffold with enhanced mechanical properties has recently been developed by our group. It includes: 1) A load-bearing module: a skeleton which is made of a slowly degradable material, undertaking mechanical necessities of the scaffold, and 2) A bioreactive module: a porous and biodegradable component undertaking biological necessities of the scaffold. The load-bearing module is placed into the bio-reactive module to reinforce it. This paper is dedicated to optimizing the load-bearing module for a certain customized alveolar bone defect. More specifically, a 3D-printed skeleton, made of polycaprolactone (PCL), is optimized based on the boundary conditions of the defect shape using the finite element method (FEM) to minimize the weight (to minimize the amount of PCL) and maximize the mechanical properties and porosity of the skeleton. Gelatin foam has been incorporated into the optimized skeleton through the aminolysis process to form the bio-reactive module. The mechanical characterization confirmed that the optimized load-bearing module has a bridge-like shape and can significantly improve the mechanical properties of the scaffold. Also, in vitro studies showed that the Revised manuscript (clean version) Click here to view linked References fabricated scaffold can improve cell proliferation and osteogenesis. This kind of scaffold can be useful for the treatment of critical-sized defects.

4.
Connect Tissue Res ; 63(5): 514-529, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35132918

RESUMO

BACKGROUND: Oral mucosa equivalents (OMEs) have been used as in vitro models (eg, for studies of human oral mucosa biology and pathology, toxicological and pharmacological tests of oral care products), and clinically to treat oral defects. However, the human oral mucosa is a highly vascularized tissue and implantation of large OMEs can fail due to a lack of vascularization. To develop equivalents that better resemble the human oral mucosa and increase the success of implantation to repair large-sized defects, efforts have been made to prevascularize these constructs. PURPOSE: The aim of this narrative review is to provide an overview of the human oral mucosa structure, common approaches for its reconstruction, and the development of OMEs, their prevascularization, and in vitro and clinical potential applications. STUDY SELECTION: Articles on non-prevascularized and prevascularized OMEs were included, since the development and applications of non-prevascularized OMEs are a foundation for the design, fabrication, and optimization of prevascularized OMEs. CONCLUSIONS: Several studies have reported the development and in vitro and clinical applications of OMEs and only a few were found on prevascularized OMEs using different approaches of fabrication and incorporation of endothelial cells, indicating a lack of standardized protocols to obtain these equivalents. However, these studies have shown the feasibility of prevascularizing OMEs and their implantation in animal models resulted in enhanced integration and healing. Vascularization in tissue equivalents is still a challenge, and optimization of cell culture conditions, biomaterials, and fabrication techniques along with clinical studies is required.


Assuntos
Mucosa Bucal , Engenharia Tecidual , Animais , Materiais Biocompatíveis , Células Endoteliais , Humanos , Neovascularização Fisiológica , Engenharia Tecidual/métodos
5.
Crit Rev Food Sci Nutr ; 62(13): 3658-3697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33399020

RESUMO

The therapeutic effects of carotenoids as dietary supplements to control or even treat some specific diseases including diabetic retinopathy, cardiovascular diseases, bacterial infections, as well as breast, prostate, and skin cancer are discussed in this review and also thoughts on future research for their widespread use are emphasized. From the stability standpoint, carotenoids have low bioavailability and bioaccessibility owing to their poor water solubility, deterioration in the presence of environmental stresses such as oxygen, light, and high heat as well as rapid degradation during digestion. Nanoencapsulation technologies as wall or encapsulation materials have been increasingly used for improving food product functionality. Nanoencapsulation is a versatile process employed for the protection, entrapment, and the delivery of food bioactive products including carotenoids from diverse environmental conditions for extended shelf lives and for providing controlled release. Therefore, we present here, recent (mostly during the last five years) nanoencapsulation methods of carotenoids with various nanocarriers. To us, this review can be considered as the first highlighting not only the potential therapeutic effects of carotenoids on various diseases but also their most effective nanodelivery systems.HighlightsBioactive compounds are of deep interest to improve food properties.Carotenoids (such as ß-carotene and xanthophylls) play indispensable roles in maintaining human health and well-being.A substantial research effort has been carried out on developing beneficial nanodelivery systems for various carotenoids.Nanoencapsulation of carotenoids can enhance their functional properties.Stable nanoencapsulated carotenoids could be utilized in food products.


Assuntos
Carotenoides , Sistemas de Liberação de Fármacos por Nanopartículas , Disponibilidade Biológica , Suplementos Nutricionais , Excipientes , Humanos
6.
Biotechnol Appl Biochem ; 69(5): 2102-2111, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34632622

RESUMO

We report a label-free electrochemical aptamer-based biosensor for the detection of human prostate-specific antigen (PSA). The thiolate DNA aptamer against PSA was conjugated to the reduced graphene oxide/Au (RGO-Au) nanocomposite through the self-assembly of Au-S groups. Owing to the large volume to surface ratio, the RGO-Au nanocomposite provides a large surface for aptamer loading. The RGO-Au/aptamer was combined with a Nafion polymer and immobilized on a glassy carbon electrode. The interaction of aptamer with PSA was studied by cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy. The detection of limit for prepared electrode was obtained about 50 pg/mL at the potential of 0.4 V in potassium hexacyanoferrate [K4 Fe(CN)6 ] medium. To decrease the limit of detection (LOD) and applied potential of the prepared nanoprobe Cu/carbon quantum dots (CuCQD) is introduced as a new redox. The results show that this new electrochemical medium provides better conditions for the detection of PSA. LOD of a nanoprobe in CuCQD media was obtained as 40 pg/mL at the potential of -0.2 V. Under optimal conditions, the aptasensor exhibits a linear response to PSA with a LOD as small as 3 pg/mL. The present aptasensor is highly selective and sensitive and shows satisfactory stability and repeatability.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Grafite , Nanocompostos , Antígeno Prostático Específico , Pontos Quânticos , Humanos , Masculino , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Carbono , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Grafite/química , Limite de Detecção , Antígeno Prostático Específico/análise , Pontos Quânticos/química
7.
Mater Chem Phys ; 276: 125382, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34725529

RESUMO

The recent pandemic of COVID-19 has raised global health concerns. Preventing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) activity in the body is a very promising method to overcome the COVID-19 pandemic. One of the prevention methods is constraining the binding process among the human cell receptor-ACE2 and coronavirus spike protein. In the research done, the effect of deformation of the spike protein structure, due to the covalent organic frameworks (COFs), in reducing the interactions of ACE2 and the spike protein by the computational method was investigated. In this regard, atomic analysis of the interactions of ACE2 and the spike protein is provided using a molecular dynamics simulation. First, we investigated the interactions of the three different COFs, including COF-78, DAAQ-TFP, and COF-OEt, with the spike protein by analyzing the bond energies, as well as structural changes of the spike protein. Then, intermolecular interactions of the deformed spike protein along with ACE2 were assessed to clarify the protein's fusion after the deformation. As indicated by the results, although all introduced COFs deformed the spike protein in an effective way, COF-78 showed the best performance in the prevention of spike protein-ACE2 interactions by changing the molecular structure of the protein. Indeed, the interaction analysis of the deformed spike protein by COF-78 with the ACE2 showed that their interactions had the lowest absolute value of energy, along with the least amount of hydrogen bonds, in which the compaction of the protein was lower compared to the other deformed proteins. Moreover, having a high contact area with an aqueous media as well as severe fluctuations during the simulation time confirmed the positive performance of COF-78. In the current study, we aimed to introduce novel materials and COVID-19 prevention methodology that can be used in face masks and for surface disinfection.

8.
Mater Lett ; 3182022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35431373

RESUMO

A modular design composed of 3D-printed polycaprolactone (PCL) as the load-bearing module, and dual porosity gelatin foam as the bio-reactive module, was developed and characterized in this study. Surface treatment of the PCL module through aminolysis-aldehyde process was found to yield a stronger interface bonding compared to NaOH hydrolysis, and therefore was used in the fabrication procedure. The modular scaffold was shown to significantly improve the mechanical properties of the gelatin foam. Both compressive modulus and ultimate strength was found to increase over 10 times when the modular design was employed. The bio-reactive module i.e., gelatin foam, presented a dual porosity network of 100-300 µm primary and <10 µm secondary pores. SEM images revealed excellent attachment of DPSCs to the bio-reactive module.

9.
Med Res Rev ; 41(1): 395-434, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32990372

RESUMO

A wide spectrum of genetic and epigenetic variations together with environmental factors has made colorectal cancer (CRC), which involves the colon and rectum, a challenging and heterogeneous cancer. CRC cannot be effectively overcomed by common conventional therapies including surgery, chemotherapy, targeted therapy, and hormone replacement which highlights the need for a rational design of novel anticancer therapy. Accumulating evidence indicates that RNA interference (RNAi) could be an important avenue to generate great therapeutic efficacy for CRC by targeting genes that are responsible for the viability, cell cycle, proliferation, apoptosis, differentiation, metastasis, and invasion of CRC cells. In this review, we underline the documented benefits of small interfering RNAs and short hairpin RNAs to target genes and signaling pathways related to CRC tumorigenesis. We address the synergistic effects of RNAi-mediated gene knockdown and inhibitors/chemotherapy agents to increase the sensitivity of CRC cells to common therapies. Finally, this review points new delivery systems/materials for improving the cellular uptake efficiency and reducing off-target effects of RNAi.


Assuntos
Neoplasias Colorretais , Apoptose , Carcinogênese , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Humanos , Interferência de RNA , RNA Interferente Pequeno/genética
10.
Cell Tissue Res ; 384(2): 403-421, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33433691

RESUMO

Production of a 3D bone construct with high-yield differentiated cells using an appropriate cell source provides a reliable strategy for different purposes such as therapeutic screening of the drugs. Although adult stem cells can be a good source, their application is limited due to invasive procedure of their isolation and low yield of differentiation. Patient-specific human-induced pluripotent stem cells (hiPSCs) can be an alternative due to their long-term self-renewal capacity and pluripotency after several passages, resolving the requirement of a large number of progenitor cells. In this study, a new biphasic 3D-printed collagen-coated HA/ß-TCP scaffold was fabricated to provide a 3D environment for the cells. The fabricated scaffolds were characterized by the 3D laser scanning digital microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and mechanical test. Then, the osteogenesis potential of the hiPSC-seeded scaffolds was investigated compared to the buccal fat pad stem cell (BFPSC)-seeded scaffolds through in vitro and in vivo studies. In vitro results demonstrated up-regulated expressions of osteogenesis-related genes of RUNX2, ALP, BMP2, and COL1 compared to the BFPSC-seeded scaffolds. In vivo results on calvarial defects in the rats confirmed a higher bone formation in the hiPSC-seeded scaffolds compared to the BFPSC-seeded groups. The immunofluorescence assay also showed higher expression levels of collagen I and osteocalcin proteins in the hiPSC-seeded scaffolds. It can be concluded that using the hiPSC-seeded scaffolds can lead to a high yield of osteogenesis, and the hiPSCs can be used as a superior stem cell source compared to BFPSCs for bone-like construct bioengineering.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Células-Tronco Pluripotentes Induzidas/metabolismo , Osteogênese/fisiologia , Impressão Tridimensional/normas , Alicerces Teciduais/normas , Tecido Adiposo/fisiopatologia , Animais , Diferenciação Celular , Proliferação de Células , Humanos , Masculino , Ratos , Ratos Wistar
11.
Biotechnol Appl Biochem ; 68(3): 616-625, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32533571

RESUMO

In this study, poly (d, l-lactide-co-glycolide) (PLGA) composite microspheres containing anhydrous reverse micelle (R.M.) dipalmitoylphosphatidylcholine (DPPC) nanoparticles loaded vascular endothelial growth factor (VEGF) were produced using microfluidic platforms. The VEGF-loaded R.M. nanoparticles (VRM) were achieved by initial self-assembly and subsequent lipid inversion of the DPPC vesicles. The fabricated VRMs were encapsulated into the PLGA matrix by flow-focusing geometry microfluidic platforms. The encapsulation efficiency, in vitro release profile, and the bioactivity of the produced composite microspheres were investigated. The release study showed that VEGF was slowly released from the PLGA composite microspheres over 28 days with a reduced initial burst (18 â€¯± â€¯4.17% in the first 24 H). The VEGF stability during encapsulation and release period was also investigated, and the results indicated that encapsulated VEGF was well preserved. Also, the bioactivity assay of the PLGA composite microspheres on human umbilical vein endothelial cells was confirmed that the encapsulated VEGF was utterly active. The present monodisperse and controllable VEGF-loaded microspheres with reproducible manner could be widely used in tissue engineering and therapeutic applications.


Assuntos
Técnicas Analíticas Microfluídicas , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Fatores de Crescimento do Endotélio Vascular/química , 1,2-Dipalmitoilfosfatidilcolina , Humanos , Micelas , Nanopartículas , Tamanho da Partícula , Propriedades de Superfície
12.
J Mater Sci Mater Med ; 32(5): 49, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33891249

RESUMO

Urea is the result of the breakdown of proteins in the liver, the excess of which circulates in the blood and is adsorbed by the kidneys. However, in the case of kidney diseases, some products, specifically urea, cannot be removed from the blood by the kidneys and causes serious health problems. The end-stage renal disease (ESRD) patients are not able to purify their blood, which endangers their life. ESRD patients require dialysis, a costly and difficult method of urea removal from the blood. Wearable artificial kidneys (WAKs) are consequently designed to remove the waste from blood. Regarding the great amount of daily urea production in the body, WAKs should contain strong and selective urea adsorbents. Fullerenes-which possess fascinating chemical properties-have been considered herein to develop novel urea removal adsorbents. Molecular dynamics (MD) has enabled researchers to study the interaction of different materials and can pave the way toward facilitating the development of wearable devices. In this study, urea adsorption by N-doped fullerenes and P-doped fullerenes were assessed through MD simulations. The urea adsorption was simulated by five samples of fullerenes, with phosphorous and different nitrogen dopant contents. For comparing the urea adsorption capacity in the performed simulations, detailed characteristics-including the energy analysis, radius of gyration, radial distribution function (RDF), root-mean-square fluctuation (RMSD), and H-bond analyses were investigated. It had been determined that the fullerene containing 8% nitrogen-with the highest reduction in the radius of gyration, the maximum RDF, a high adsorption energy, and a high number of hydrogen bonds-adsorbs urea more efficiently.


Assuntos
Fulerenos/química , Rins Artificiais , Nitrogênio/química , Fósforo/química , Ureia/química , Dispositivos Eletrônicos Vestíveis , Adsorção , Materiais Biocompatíveis , Humanos , Teste de Materiais , Diálise Renal
13.
Arch Biochem Biophys ; 691: 108485, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32712288

RESUMO

Most problems associated with chemotherapeutic agents involve non-specific cytotoxicity, low intratumoral accumulation and drug resistance. Targeted drug delivery systems (TDDS) based on nanoparticles (NPs) are a new strategy for better therapeutic efficiency, along with reduction of side effects commonly seen with cancer drugs. Poly (lactic-co-glycolic acid) (PLGA), as one of the furthest developed synthetic polymer, has gained significant attention because of excellent properties-including biodegradability and biocompatibility, controlled release of drug, protection of drug or gene from decomposition and ability to modify surface with targeting agents for both cancer diagnosis and therapy. Aptamers are single-stranded RNA or DNA that can fold through intramolecular interactions into specific three-dimensional structures to selectively and exclusively bind with interested biomarkers. In this review, we explain the latest developments regarding the application of aptamer-decorated PLGA NPs in delivery of therapeutic agents or cancer-related genes into cancer cells. Additionally, we discuss the most recent efforts in the field of aptamer-grafted PLGA-based NPs as theranostics and stimuli-responsive agents.


Assuntos
Antineoplásicos/uso terapêutico , Aptâmeros de Nucleotídeos/química , Portadores de Fármacos/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Sequência de Bases , Linhagem Celular Tumoral , Humanos , Neoplasias/diagnóstico por imagem , Nanomedicina Teranóstica/métodos
14.
J Mater Sci Mater Med ; 31(10): 85, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33000320

RESUMO

The purpose of this study was to produce and characterize Hydroxyapatite/Zinc Oxide/Palladium (HA/0.05 wt% ZnO/0.1 wt% Pd) nanocomposite scaffolds and study their mechanical and antibacterial properties, biocompatibility and bioactivity. The initial materials were developed using sol-gel and precipitation methods. Scaffolds were characterized using atomic absorption analysis (AA), scanning electron microcopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM), atomic force microscopy (AFM) and Brunauer-EmmeS-Teller (BET) method. Furthermore, the bioactivity of scaffolds in simulated body fluid (SBF) and the interaction of dental pulp stem cells (DPSCs) with the nanocomposite scaffolds were assessed. Our results showed that the HA/ZnO/Pd (H1), HA/ZnO/Pd coated by 0.125 g chitosan (H2) and HA/ZnO/Pd coated by 0.25 g chitosan (H3) scaffolds possess higher compressive strength and toughness and lower microhardness and density compared to the pure HA (H0) scaffolds. Immersion of samples in SBF showed the deposition of apatite on the surface of the scaffolds. The biocompatibility assay indicated lower cell proliferation on the H1, H2 and H3 in comparison to the H0. The antibacterial results obtained show a significant impact by loading Pd/ZnO on HA in the deactivation of microorganisms in vitro.


Assuntos
Substitutos Ósseos/química , Osso e Ossos , Durapatita/química , Nanocompostos/química , Paládio/química , Engenharia Tecidual/métodos , Óxido de Zinco/química , Antibacterianos/química , Materiais Biocompatíveis/química , Líquidos Corporais , Proliferação de Células , Quitosana/química , Força Compressiva , Humanos , Técnicas In Vitro , Concentração Inibidora 50 , Teste de Materiais , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Nanopartículas , Nitritos/química , Porosidade , Pós , Pseudomonas aeruginosa , Alicerces Teciduais , Zinco
15.
Ceram Int ; 46(8 Pt B): 11905-11912, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34421172

RESUMO

Improving the physical, mechanical and biological properties of brushite cements (BrC) is of a great interest for using them in bone and dental tissue engineering applications. The objective of this study was to incorporate iron (Fe) at different concentrations (0.25, 0.50, and 1.00 wt.%) to BrC and study the role of Fe on phase composition, setting time, compressive strength, and interaction with human dental pulp stem cells (hDPSCs). Results showed that increase in Fe concentration increases the ß-tricalcium phosphate (ß-TCP)/ dicalcium phosphate dihydrate (DCPD) ratio and prolongs the initial and final setting time due to effective role of Fe on stabilizing the ß-TCP crystal structure and retarding its dissolution kinetic, in a dose dependent manner where the highest setting time was recorded for 1.00 wt.% Fe-BrC sample. Addition of low concentrations of Fe (0.25 and 0.50 wt.%) did not have adverse effect on compressive strength and strength was in the range of 5.7-7.05 (±~1.4) MPa; however, presence of 1.00 wt.% Fe decreases the strength of BrC from 7.05 ± 1.57 MPa to 3.12 ± 1.06 MPa. Interaction between the BrCs and hDPSCs was evaluated by cell proliferation assay, scanning electron microscopy, and live/dead staining. Low concentrations of 0.25, and 0.50 wt.% of Fe did not have any adverse effect on cell attachment and proliferation; while significant decrease in cellular activity was evident in BrC samples doped with 1.00 wt. %. Together, these data show that low concentrations of Fe (equal or less than 0.50 wt. %) can be safely added to BrC without any adverse effect on physical, mechanical and biological properties in presence of hDPSCs.

16.
J Cell Physiol ; 234(10): 16913-16924, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30809802

RESUMO

Significant advances have been achieved in recent years to ameliorate rheumatoid arthritis (RA) in animal models using gene therapy approaches rather than biological treatments. Although biological agents serve as antirheumatic drugs with suppressing proinflammatory cytokine activities, they are usually accompanied by systemic immune suppression resulting from continuous or high systemic dose injections of biological agents. Therefore, gene transfer approaches have opened an interesting perspective to deliver one or multiple genes in a target-specific or inducible manner for the sustained intra-articular expression of therapeutic products. Accordingly, many studies have focused on gene transferring methods in animal models by using one of the available approaches. In this study, the important strategies used to select effective genes for RA gene therapy have been outlined. Given the work done in this field, the future looks bright for gene therapy as a new method in the clinical treatment of autoimmune diseases such as RA, and by ongoing efforts in this field, we hope to achieve feasible, safe, and effective treatment methods.


Assuntos
Artrite Reumatoide/terapia , Terapia Genética , Artrite Reumatoide/genética , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica , Vetores Genéticos , Humanos , Vírus
17.
Biomed Microdevices ; 21(4): 93, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31686232

RESUMO

Microfluidic systems (MFS) provide a range of advantages in biomedical applications, including improved controllability of material characteristics and lower consumption of reagents, energy, time and money. Fabrication of MFS employs various materials, such as glass, silicon, ceramics, paper, and metals such as gold, copper, aluminum, chromium and titanium. In this review, gold thin film microfluidic channels (GTFMFC) are discussed with reference to fabrication methods and their diverse use in chemical and biomedical applications. The advantages of gold thin films (GTF) include flexibility, ease of manufacture, adhesion to polymer surfaces, chemical stability, good electrical conductivity, surface plasmon resonance effects, ability to be chemically functionalized, etc. Various electroactuators and electroanalytical devices can incorporate GTF. GTF-based MFS have been used in environmental monitoring, assays of biomarkers, immunoassays, cell culture studies and pathogen identification.


Assuntos
Pesquisa Biomédica/instrumentação , Ouro/química , Dispositivos Lab-On-A-Chip
18.
Mikrochim Acta ; 186(12): 787, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31732807

RESUMO

An electrochemical aptasensor is described for the voltammetric determination of lipopolysaccharide (LPS) from Escherichia coli 055:B5. Aptamer chains were immobilized on the surface of a glassy carbon electrode (GCE) via reduced graphene oxide and gold nanoparticles (RGO/AuNPs). Fast Fourier transform infrared, X-ray diffraction and transmission electron microscopy were used to characterize the nanomaterials. Cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy were used to characterize the modified GCE. The results show that the modified electrode has a good selectivity for LPS over other biomolecules. The hexacyanoferrate redox system, typically operated at around 0.3 V (vs. Ag/AgCl) is used as an electrochemical probe. The detection limit is 30 fg·mL-1. To decrease the electrochemical potential for detection of LPS, Mg/carbon quantum dots were used as redox active media. They decrease the detection potentialto 0 V and the detection of limit (LOD) to 1 fg·mL-1. The electrode was successfully used to analyze serum of patients and healthy persons. Graphical abstractSchematic representation of the modification of reduced graphene oxide gold nanoparticles with aptamer chains to immobilize on the glassy carbon electrode surface for electrochemical detection of lipopolysaccharides.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Escherichia coli/química , Lipopolissacarídeos/sangue , Nanopartículas Metálicas/química , Sequência de Bases , Eletrodos , Ferrocianetos/química , Ouro/química , Grafite/química , Humanos , Limite de Detecção , Magnésio/química , Oxirredução , Pontos Quânticos/química
19.
Biomed Microdevices ; 20(3): 66, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30088103

RESUMO

In recent years, there has been growing interest in optically-encoded or tagged functionalized microbeads as a solid support platform to capture proteins or nucleotides which may serve as biomarkers of various diseases. Multiplexing technologies (suspension array or planar array) based on optically encoded microspheres have made possible the observation of relatively minor changes in biomarkers related to specific diseases. The ability to identify these changes at an early stage may allow the diagnosis of serious diseases (e.g. cancer) at a time-point when curative treatment may still be possible. As the overall accuracy of current diagnostic methods for some diseases is often disappointing, multiplexed assays based on optically encoded microbeads could play an important role to detect biomarkers of diseases in a non-invasive and accurate manner. However, detection systems based on functionalized encoded microbeads are still an emerging technology, and more research needs to be done in the future. This review paper is a preliminary attempt to summarize the state-of-the-art concerning diagnostic microbeads; including microsphere composition, synthesis, encoding technology, detection systems, and applications.


Assuntos
Análise em Microsséries , Microesferas , Linhagem Celular Tumoral , Simulação por Computador , Citometria de Fluxo , Corantes Fluorescentes , Humanos , Nanopartículas/química , Neoplasias/diagnóstico , Fenômenos Ópticos , Polimerização , Proteínas/química , Propriedades de Superfície
20.
Nanotechnology ; 29(47): 475101, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30179859

RESUMO

In this study, we introduce a novel graphene oxide/silver/arginine (GO/Ag/Arg) nanohybrid structure, which can act as an angiogenesis promoter and provide antibacterial nanostructure for improving the wound healing process. GO/Ag nanostructure has been optimized in terms of the GO/Ag mass ratio and pH values using central composite design and the response surface method to increase the Ag loading efficiency. Then, Arg was chemically introduced to the surface of GO/Ag nanostructure. Electrospun polycaprolactone (PCL)-GO/Ag/Arg nanocomposite was successfully fabricated and characterized. The synthesized nanocomposite demonstrated not only a great antibacterial effect on both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacterial species, but appropriate biocompatibility against L929 fibroblastic cell lines. The results demonstrated that the preparation of the PCL-GO/Ag/Arg nanocomposite at a concentration of 1.0 wt% GO/Ag/Arg possessed the best biological and mechanical features. In vivo experiments also revealed that the use of optimized PCL-GO/Ag/Arg nanocomposite, after 12 d of treatment, led to significant increase in the healing process and also regeneration of the wound via reconstruction of a thickened epidermis layer on the wound surface, which was confirmed by histological analysis. In conclusion, the proposed approach can introduce a novel notion for preparing antibacterial material that significantly promotes angiogenesis.


Assuntos
Antibacterianos/uso terapêutico , Arginina/uso terapêutico , Grafite/uso terapêutico , Nanocompostos/uso terapêutico , Prata/uso terapêutico , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/química , Arginina/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/prevenção & controle , Grafite/química , Teste de Materiais , Camundongos , Nanocompostos/química , Óxidos/química , Óxidos/farmacologia , Prata/química , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Infecção dos Ferimentos/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA