Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Cell ; 183(3): 568-575, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33125882

RESUMO

We identify problematic areas throughout the Science, Technology, Engineering and Mathematics (STEM) pipeline that perpetuate racial disparities in academia. Distinct ways to curtail these disparities include early exposure and access to resources, supportive mentoring networks and comprehensive training programs specifically for racially minoritized students and trainees at each career stage. These actions will revitalize the STEM pipeline.


Assuntos
Engenharia/educação , Matemática/educação , Ciência/educação , Tecnologia/educação , Educação de Pós-Graduação , Humanos , Universidades
2.
Trends Biochem Sci ; 46(5): 345-348, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33622580

RESUMO

Scientific success is mainly supported by mentoring, which often occurs through face-to-face interactions. Changes to the research environment incurred by the Coronavirus 2019 (COVID-19) pandemic have necessitated mentorship adaptations. Here, we describe how mentors can broaden their mentorship to support trainee growth and provide reassurance about trainee development amid uncertain circumstances.


Assuntos
COVID-19/epidemiologia , Tutoria , Pandemias , Pesquisadores/educação , SARS-CoV-2 , Humanos
3.
Ann Intern Med ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39133923

RESUMO

BACKGROUND: There are currently no validated clinical biomarkers of postacute sequelae of SARS-CoV-2 infection (PASC). OBJECTIVE: To investigate clinical laboratory markers of SARS-CoV-2 and PASC. DESIGN: Propensity score-weighted linear regression models were fitted to evaluate differences in mean laboratory measures by prior infection and PASC index (≥12 vs. 0). (ClinicalTrials.gov: NCT05172024). SETTING: 83 enrolling sites. PARTICIPANTS: RECOVER-Adult cohort participants with or without SARS-CoV-2 infection with a study visit and laboratory measures 6 months after the index date (or at enrollment if >6 months after the index date). Participants were excluded if the 6-month visit occurred within 30 days of reinfection. MEASUREMENTS: Participants completed questionnaires and standard clinical laboratory tests. RESULTS: Among 10 094 participants, 8746 had prior SARS-CoV-2 infection, 1348 were uninfected, 1880 had a PASC index of 12 or higher, and 3351 had a PASC index of zero. After propensity score adjustment, participants with prior infection had a lower mean platelet count (265.9 × 109 cells/L [95% CI, 264.5 to 267.4 × 109 cells/L]) than participants without known prior infection (275.2 × 109 cells/L [CI, 268.5 to 282.0 × 109 cells/L]), as well as higher mean hemoglobin A1c (HbA1c) level (5.58% [CI, 5.56% to 5.60%] vs. 5.46% [CI, 5.40% to 5.51%]) and urinary albumin-creatinine ratio (81.9 mg/g [CI, 67.5 to 96.2 mg/g] vs. 43.0 mg/g [CI, 25.4 to 60.6 mg/g]), although differences were of modest clinical significance. The difference in HbA1c levels was attenuated after participants with preexisting diabetes were excluded. Among participants with prior infection, no meaningful differences in mean laboratory values were found between those with a PASC index of 12 or higher and those with a PASC index of zero. LIMITATION: Whether differences in laboratory markers represent consequences of or risk factors for SARS-CoV-2 infection could not be determined. CONCLUSION: Overall, no evidence was found that any of the 25 routine clinical laboratory values assessed in this study could serve as a clinically useful biomarker of PASC. PRIMARY FUNDING SOURCE: National Institutes of Health.

4.
Neuroimage ; 292: 120606, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604538

RESUMO

Radon is a naturally occurring gas that contributes significantly to radiation in the environment and is the second leading cause of lung cancer globally. Previous studies have shown that other environmental toxins have deleterious effects on brain development, though radon has not been studied as thoroughly in this context. This study examined the impact of home radon exposure on the neural oscillatory activity serving attention reorientation in youths. Fifty-six participants (ages 6-14 years) completed a classic Posner cuing task during magnetoencephalography (MEG), and home radon levels were measured for each participant. Time-frequency spectrograms indicated stronger theta (3-7 Hz, 300-800 ms), alpha (9-13 Hz, 400-900 ms), and beta responses (14-24 Hz, 400-900 ms) during the task relative to baseline. Source reconstruction of each significant oscillatory response was performed, and validity maps were computed by subtracting the task conditions (invalidly cued - validly cued). These validity maps were examined for associations with radon exposure, age, and their interaction in a linear regression design. Children with greater radon exposure showed aberrant oscillatory activity across distributed regions critical for attentional processing and attention reorientation (e.g., dorsolateral prefrontal cortex, and anterior cingulate cortex). Generally, youths with greater radon exposure exhibited a reverse neural validity effect in almost all regions and showed greater overall power relative to peers with lesser radon exposure. We also detected an interactive effect between radon exposure and age where youths with greater radon exposure exhibited divergent developmental trajectories in neural substrates implicated in attentional processing (e.g., bilateral prefrontal cortices, superior temporal gyri, and inferior parietal lobules). These data suggest aberrant, but potentially compensatory neural processing as a function of increasing home radon exposure in areas critical for attention and higher order cognition.


Assuntos
Atenção , Magnetoencefalografia , Radônio , Humanos , Adolescente , Criança , Masculino , Feminino , Radônio/toxicidade , Radônio/efeitos adversos , Atenção/efeitos da radiação , Atenção/fisiologia , Exposição Ambiental/efeitos adversos , Encéfalo/efeitos da radiação , Ondas Encefálicas/efeitos da radiação , Ondas Encefálicas/fisiologia , Ondas Encefálicas/efeitos dos fármacos , Orientação/fisiologia
5.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34686594

RESUMO

Motor control requires a coordinated ensemble of spatiotemporally precise neural oscillations across a distributed motor network, particularly in the beta range (15 to 30 Hz) to successfully plan and execute volitional actions. While substantial evidence implicates beta activity as critical to motor control, the molecular processes supporting these microcircuits and their inherent oscillatory dynamics remain poorly understood. Among these processes are mitochondrial integrity and the associated redox environments, although their direct impact on human neurophysiological function is unknown. Herein, 40 healthy adults completed a motor sequence paradigm during magnetoencephalography (MEG). MEG data were imaged in the time-frequency domain using a beamformer to evaluate beta oscillatory profiles during distinct phases of motor control (i.e., planning and execution) and subsequent behavior. To comprehensively quantify features of the mitochondrial redox environment, we used state-of-the-art systems biology approaches including Seahorse Analyzer to assess mitochondrial respiration and electron paramagnetic resonance spectroscopy to measure superoxide levels in whole blood as well as antioxidant activity assays. Using structural equation modeling, we tested the relationship between mitochondrial function and sensorimotor brain-behavior dynamics through alterations in the redox environment (e.g., generation of superoxide and alteration in antioxidant defenses). Our results indicated that superoxide-sensitive but not hydrogen peroxide-sensitive features of the redox environment had direct and mediating effects on the bioenergetic-neural pathways serving motor performance in healthy adults. Importantly, our results suggest that alterations in the redox environment may directly impact behavior above and beyond mitochondrial respiratory capacities alone and further may be effective targets for age- and disease-related declines in cognitive-motor function.


Assuntos
Córtex Sensório-Motor/fisiologia , Adulto , Idoso , Ritmo beta/fisiologia , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Modelos Neurológicos , Movimento/fisiologia , Vias Neurais/fisiologia , Oxirredução , Desempenho Psicomotor/fisiologia , Superóxidos/metabolismo , Adulto Jovem
6.
JAMA ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39196964

RESUMO

Importance: Most research to understand postacute sequelae of SARS-CoV-2 infection (PASC), or long COVID, has focused on adults, with less known about this complex condition in children. Research is needed to characterize pediatric PASC to enable studies of underlying mechanisms that will guide future treatment. Objective: To identify the most common prolonged symptoms experienced by children (aged 6 to 17 years) after SARS-CoV-2 infection, how these symptoms differ by age (school-age [6-11 years] vs adolescents [12-17 years]), how they cluster into distinct phenotypes, and what symptoms in combination could be used as an empirically derived index to assist researchers to study the likely presence of PASC. Design, Setting, and Participants: Multicenter longitudinal observational cohort study with participants recruited from more than 60 US health care and community settings between March 2022 and December 2023, including school-age children and adolescents with and without SARS-CoV-2 infection history. Exposure: SARS-CoV-2 infection. Main Outcomes and Measures: PASC and 89 prolonged symptoms across 9 symptom domains. Results: A total of 898 school-age children (751 with previous SARS-CoV-2 infection [referred to as infected] and 147 without [referred to as uninfected]; mean age, 8.6 years; 49% female; 11% were Black or African American, 34% were Hispanic, Latino, or Spanish, and 60% were White) and 4469 adolescents (3109 infected and 1360 uninfected; mean age, 14.8 years; 48% female; 13% were Black or African American, 21% were Hispanic, Latino, or Spanish, and 73% were White) were included. Median time between first infection and symptom survey was 506 days for school-age children and 556 days for adolescents. In models adjusted for sex and race and ethnicity, 14 symptoms in both school-age children and adolescents were more common in those with SARS-CoV-2 infection history compared with those without infection history, with 4 additional symptoms in school-age children only and 3 in adolescents only. These symptoms affected almost every organ system. Combinations of symptoms most associated with infection history were identified to form a PASC research index for each age group; these indices correlated with poorer overall health and quality of life. The index emphasizes neurocognitive, pain, and gastrointestinal symptoms in school-age children but change or loss in smell or taste, pain, and fatigue/malaise-related symptoms in adolescents. Clustering analyses identified 4 PASC symptom phenotypes in school-age children and 3 in adolescents. Conclusions and Relevance: This study developed research indices for characterizing PASC in children and adolescents. Symptom patterns were similar but distinguishable between the 2 groups, highlighting the importance of characterizing PASC separately for these age ranges.

7.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39062924

RESUMO

(1) The prevalence of depression is two times higher in women than men. Black women have an increased risk of depression due to stressors such as low socioeconomic status and perceived discrimination. Depression is likely influenced by both genetic and environmental factors. Psychosocial stressors can influence DNA methylation (DNAm), leading to changes in gene expression and ultimately, depression. The objective of this study was to examine associations between DNAm and depressive symptoms in Black women. (2) This study was a secondary analysis of data from the Intergenerational Impact of Genetic and Psychological Factors on Blood Pressure (InterGEN) Study. Perceived discrimination was assessed using Krieger's Experiences of Discrimination and Waelde's Race-Related Events Scale, and participants were screened for depressive symptoms with the Beck Depression Inventory. Raw data from saliva samples were analyzed using the Illumina Infinium Epic (850 K) BeadChip and then preprocessed in RStudio. (3) Differential methylation analysis identified DNAm sites and regions associated with depressive symptoms. Six DNAm sites had a q-value less than 0.05. Additionally, of the 25 regions identified, 12 were associated with neurological diseases or disorders. (4) These findings suggest that there is a neurological component to depression, which should be considered during treatment.


Assuntos
Metilação de DNA , Depressão , Epigenoma , Estudo de Associação Genômica Ampla , Humanos , Feminino , Depressão/genética , Depressão/epidemiologia , Adulto , Pessoa de Meia-Idade , Epigênese Genética , Negro ou Afro-Americano/genética , Negro ou Afro-Americano/psicologia
8.
Am J Physiol Heart Circ Physiol ; 325(5): H965-H982, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37624101

RESUMO

With sparse treatment options, cardiac disease remains a significant cause of death among humans. As a person ages, mitochondria breakdown and the heart becomes less efficient. Heart failure is linked to many mitochondria-associated processes, including endoplasmic reticulum stress, mitochondrial bioenergetics, insulin signaling, autophagy, and oxidative stress. The roles of key mitochondrial complexes that dictate the ultrastructure, such as the mitochondrial contact site and cristae organizing system (MICOS), in aging cardiac muscle are poorly understood. To better understand the cause of age-related alteration in mitochondrial structure in cardiac muscle, we used transmission electron microscopy (TEM) and serial block facing-scanning electron microscopy (SBF-SEM) to quantitatively analyze the three-dimensional (3-D) networks in cardiac muscle samples of male mice at aging intervals of 3 mo, 1 yr, and 2 yr. Here, we present the loss of cristae morphology, the inner folds of the mitochondria, across age. In conjunction with this, the three-dimensional (3-D) volume of mitochondria decreased. These findings mimicked observed phenotypes in murine cardiac fibroblasts with CRISPR/Cas9 knockout of Mitofilin, Chchd3, Chchd6 (some members of the MICOS complex), and Opa1, which showed poorer oxidative consumption rate and mitochondria with decreased mitochondrial length and volume. In combination, these data show the need to explore if loss of the MICOS complex in the heart may be involved in age-associated mitochondrial and cristae structural changes.NEW & NOTEWORTHY This article shows how mitochondria in murine cardiac changes, importantly elucidating age-related changes. It also is the first to show that the MICOS complex may play a role in outer membrane mitochondrial structure.


Assuntos
Mitocôndrias , Miocárdio , Humanos , Masculino , Camundongos , Animais , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Coração , Envelhecimento , Transdução de Sinais , Proteínas Mitocondriais/metabolismo
9.
Hum Brain Mapp ; 44(17): 6043-6054, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37811842

RESUMO

The transition from childhood to adolescence is associated with an influx of sex hormones, which not only facilitates physical and behavioral changes, but also dramatic changes in neural circuitry. While previous work has shown that pubertal hormones modulate structural and functional brain development, few of these studies have focused on the impact that such hormones have on spontaneous cortical activity, and whether these effects are modulated by sex during this critical developmental window. Herein, we examined the effect of endogenous testosterone on spontaneous cortical activity in 71 typically-developing youth (ages 10-17 years; 32 male). Participants completed a resting-state magnetoencephalographic (MEG) recording, structural MRI, and provided a saliva sample for hormone analysis. MEG data were source-reconstructed and the power within five canonical frequency bands (delta, theta, alpha, beta, and gamma) was computed. The resulting power spectral density maps were analyzed via vertex-wise ANCOVAs to identify spatially specific effects of testosterone and sex by testosterone interactions, while covarying out age. We found robust sex differences in the modulatory effects of testosterone on spontaneous delta, beta, and gamma activity. These interactions were largely confined to frontal cortices and exhibited a stark switch in the directionality of the correlation from the low (delta) to high frequencies (beta/gamma). For example, in the delta band, greater testosterone related to lower relative power in prefrontal cortices in boys, while the reverse pattern was found for girls. These data suggest testosterone levels are uniquely related to the development of spontaneous cortical dynamics during adolescence, and such levels are associated with different developmental patterns in males and females within regions implicated in executive functioning.


Assuntos
Magnetoencefalografia , Testosterona , Adolescente , Humanos , Masculino , Feminino , Criança , Testosterona/farmacologia , Imageamento por Ressonância Magnética , Lobo Frontal , Córtex Pré-Frontal/diagnóstico por imagem , Encéfalo
10.
Brain Behav Immun ; 107: 265-275, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272499

RESUMO

Despite virologic suppression, people living with HIV (PLWH) remain at risk for developing cognitive impairment, with aberrations in motor control being a predominant symptom leading to functional dependencies in later life. While the neuroanatomical bases of motor dysfunction have recently been illuminated, the underlying molecular processes remain poorly understood. Herein, we evaluate the predictive capacity of the mitochondrial redox environment on sensorimotor brain-behavior dynamics in 40 virally-suppressed PLWH and 40 demographically-matched controls using structural equation modeling. We used state-of-the-art approaches, including Seahorse Analyzer of mitochondrial function, electron paramagnetic resonance spectroscopy to measure superoxide levels, antioxidant activity assays and dynamic magnetoencephalographic imaging to quantify sensorimotor oscillatory dynamics. We observed differential modulation of sensorimotor brain-behavior relationships by superoxide and hydrogen peroxide-sensitive features of the redox environment in PLWH, while only superoxide-sensitive features were related to optimal oscillatory response profiles and better motor performance in controls. Moreover, these divergent pathways may be attributable to immediate, separable mechanisms of action within the redox environment seen in PLWH, as evidenced by mediation analyses. These findings suggest that mitochondrial redox parameters are important modulators of healthy and pathological oscillations in motor systems and behavior, serving as potential targets for remedying HIV-related cognitive-motor dysfunction in the future.


Assuntos
Infecções por HIV , Nível de Saúde , Humanos , Encéfalo , Mitocôndrias
11.
Cereb Cortex ; 32(23): 5376-5387, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35149873

RESUMO

Semantic processing is the ability to discern and maintain conceptual relationships among words and objects. While the neural circuits serving semantic representation and controlled retrieval are well established, the neuronal dynamics underlying these processes are poorly understood. Herein, we examined 25 healthy young adults who completed a semantic relation word-matching task during magnetoencephalography (MEG). MEG data were examined in the time-frequency domain and significant oscillatory responses were imaged using a beamformer. Whole-brain statistical analyses were conducted to compare semantic-related to length-related neural oscillatory responses. Time series were extracted to visualize the dynamics and were linked to task performance using structural equation modeling. The results indicated that participants had significantly longer reaction times in semantic compared to length trials. Robust MEG responses in the theta (3-6 Hz), alpha (10-16 Hz), and gamma (64-76 Hz and 64-94 Hz) bands were observed in parieto-occipital and frontal cortices. Whole-brain analyses revealed stronger alpha oscillations in a left-lateralized network during semantically related relative to length trials. Importantly, stronger alpha oscillations in the left superior temporal gyrus during semantic trials predicted faster responses. These data reinforce existing literature and add novel temporal evidence supporting the executive role of the semantic control network in behavior.


Assuntos
Magnetoencefalografia , Semântica , Adulto Jovem , Humanos , Magnetoencefalografia/métodos , Córtex Cerebral/fisiologia , Mapeamento Encefálico/métodos , Encéfalo/fisiologia
12.
Cereb Cortex ; 32(6): 1286-1294, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34416763

RESUMO

Somatosensory cortical activity is altered in individuals with cerebral palsy (CP). However, previous studies have focused on the lower extremities in children with CP and have given less attention to structural changes that may contribute to these alterations. We used a multimodal neuroimaging approach to investigate the relationship between somatosensory cortical activity and cortical thickness in 17 adults with CP (age = 32.8 ± 9.3 years) and 18 healthy adult controls (age = 30.7 ± 9.8 years). Participants performed a median nerve paired-pulse stimulation paradigm while undergoing magnetoencephalography (MEG) to investigate somatosensory cortical activity and sensory gating. Participants also underwent magnetic resonance imaging to evaluate cortical thickness within the area of the somatosensory cortex that generated the MEG response. We found that the somatosensory responses were attenuated in the adults with CP (P = 0.004). The adults with CP also hypergated the second stimulation (P = 0.030) and had decreased cortical thickness in the somatosensory cortex (P = 0.015). Finally, the strength of the somatosensory response was significantly correlated with the cortical thickness (P = 0.023). These findings demonstrate that the aberrant somatosensory cortical activity in adults with CP extends to the upper extremities and appears to be related to cortical thickness.


Assuntos
Paralisia Cerebral , Magnetoencefalografia , Adulto , Paralisia Cerebral/diagnóstico por imagem , Paralisia Cerebral/patologia , Criança , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia/métodos , Neuroimagem , Córtex Somatossensorial/fisiologia , Adulto Jovem
13.
Dev Psychopathol ; : 1-11, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615120

RESUMO

Over the past decade, transdiagnostic indicators in relation to neurobiological processes have provided extensive insight into youth's risk for psychopathology. During development, exposure to childhood trauma and dysregulation (i.e., so-called AAA symptomology: anxiety, aggression, and attention problems) puts individuals at a disproportionate risk for developing psychopathology and altered network-level neural functioning. Evidence for the latter has emerged from resting-state fMRI studies linking mental health symptoms and aberrations in functional networks (e.g., cognitive control (CCN), default mode networks (DMN)) in youth, although few of these investigations have used longitudinal designs. Herein, we leveraged a three-year longitudinal study to identify whether traumatic exposures and concomitant dysregulation trigger changes in the developmental trajectories of resting-state functional networks involved in cognitive control (N = 190; 91 females; time 1 Mage = 11.81). Findings from latent growth curve analyses revealed that greater trauma exposure predicted increasing connectivity between the CCN and DMN across time. Greater levels of dysregulation predicted reductions in within-network connectivity in the CCN. These findings presented in typically developing youth corroborate connectivity patterns reported in clinical populations, suggesting there is predictive utility in using transdiagnostic indicators to forecast alterations in resting-state networks implicated in psychopathology.

14.
Exp Aging Res ; : 1-18, 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37660356

RESUMO

Emotional intelligence includes an assortment of factors related to emotion function. Such factors involve emotion recognition (in this case via facial expression), emotion trait, reactivity, and regulation. We aimed to investigate how the subjective appraisals of emotional intelligence (i.e. trait, reactivity, and regulation) are associated with objective emotion recognition accuracy, and how these associations differ between young and older adults. Data were extracted from the CamCAN dataset (189 adults: 57 young/118 older) from assessments measuring these emotion constructs. Using linear regression models, we found that greater negative reactivity was associated with better emotion recognition accuracy among older adults, though the pattern was opposite for young adults with the greatest difference in disgust and surprise recognition. Positive reactivity and depression level predicted surprise recognition, with the associations significantly differing between the age groups. The present findings suggest the level to which older and young adults react to emotional stimuli differentially predicts their ability to correctly identify facial emotion expressions. Older adults with higher negative reactivity may be able to integrate their negative emotions effectively in order to recognize other's negative emotions more accurately. Alternatively, young adults may experience interference from negative reactivity, lowering their ability to recognize other's negative emotions.

15.
J Physiol ; 600(15): 3537-3548, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35723200

RESUMO

There are numerous clinical reports showing that persons with cerebral palsy (CP) have proprioceptive, stereognosis, and tactile discrimination deficits. The current consensus is that these altered perceptions are attributable to aberrant somatosensory cortical activity. It has been inferred from these data that persons with CP do not adequately process ongoing sensory feedback during motor actions, which accentuates the extent of their mobility impairments. However, this hypothesis has yet to be directly tested. We used magnetoencephalographic brain imaging to address this knowledge gap by quantifying the somatosensory dynamics evoked by applying electrical stimulation to the tibial nerve in 22 persons with CP and 25 neurotypical controls at rest and during an ankle plantarflexion isometric force motor task. We also quantified the spatiotemporal gait biomechanics of participants outside the scanner. Consistent with the literature, our results confirmed that the strength of somatosensory cortical activity was weaker in the persons with CP compared to the neurotypical controls. Our results also showed that the strength of the somatosensory cortical responses were significantly weaker during the isometric ankle force task than at rest. Most importantly, our results showed that the strength of somatosensory cortical activity during the ankle plantarflexion force production task mediated the relationship between somatosensory cortical activity at rest and both walking velocity and step length. These results suggest that youth with CP have aberrant somatosensory cortical activity during isometric force generation, which ultimately contributes to the extent of mobility impairments seen in this patient population. KEY POINTS: Persons with cerebral palsy have reduced somatosensory cortical responses at rest and during movement. The somatosensory cortical responses during movement mediate the relationship between the somatosensory cortical responses at rest and mobility. Persons with cerebral palsy may have altered sensorimotor feedback that ultimately contributes to impaired mobility.


Assuntos
Paralisia Cerebral , Adolescente , Potenciais Somatossensoriais Evocados/fisiologia , Humanos , Magnetoencefalografia , Movimento/fisiologia , Córtex Somatossensorial/fisiologia
16.
Neuroimage ; 253: 119094, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35306160

RESUMO

Fluid reasoning is the ability to problem solve in the absence of prior knowledge and is commonly conceptualized as "non-verbal" intelligence. Importantly, fluid reasoning abilities rapidly develop throughout childhood and adolescence. Although numerous studies have characterized the neural underpinnings of fluid reasoning in adults, there is a paucity of research detailing the developmental trajectory of this neural processing. Herein, we examine longitudinal changes in the neural oscillatory dynamics underlying fluid intelligence in a sample of typically developing youths. A total of 34 participants age 10 to 16 years-old completed an abstract reasoning task during magnetoencephalography (MEG) on two occasions set one year apart. We found robust longitudinal optimization in theta, beta, and gamma oscillatory activity across years of the study across a distributed network commonly implicated in fluid reasoning abilities. More specifically, activity tended to decrease longitudinally in additional, compensatory areas such as the right lateral prefrontal cortex and increase in areas commonly utilized in mature adult samples (e.g., left frontal and parietal cortices). Importantly, shifts in neural activity were associated with improvements in task performance from one year to the next. Overall, the data suggest a longitudinal shift in performance that is accompanied by a reconfiguration of the functional oscillatory dynamics serving fluid reasoning during this important period of development.


Assuntos
Magnetoencefalografia , Resolução de Problemas , Adolescente , Adulto , Criança , Humanos , Inteligência , Lobo Parietal , Córtex Pré-Frontal
17.
Neuroimage ; 247: 118852, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34954025

RESUMO

Adolescence is a critical period of structural and functional neural maturation among regions serving the cognitive control of emotion. Evidence suggests that this process is guided by developmental changes in amygdala and striatum structure and shifts in functional connectivity between subcortical (SC) and cognitive control (CC) networks. Herein, we investigate the extent to which such developmental shifts in structure and function reciprocally predict one another over time. 179 youth (9-15 years-old) completed annual MRI scans for three years. Amygdala and striatum volumes and connectivity within and between SC and CC resting state networks were measured for each year. We tested for reciprocal predictability of within-person and between-person changes in structure and function using random-intercept cross-lagged panel models. Within-person shifts in amygdala volumes in a given year significantly and specifically predicted deviations in SC-CC connectivity in the following year, such that an increase in volume was associated with decreased SC-CC connectivity the following year. Deviations in connectivity did not predict changes in amygdala volumes over time. Conversely, broader group-level shifts in SC-CC connectivity were predictive of subsequent deviations in striatal volumes. We did not see any cross-predictability among amygdala or striatum volumes and within-network connectivity measures. Within-person shifts in amygdala structure year-to-year robustly predicted weaker SC-CC connectivity in subsequent years, whereas broader increases in SC-CC connectivity predicted smaller striatal volumes over time. These specific structure function relationships may contribute to the development of emotional control across adolescence.


Assuntos
Tonsila do Cerebelo/crescimento & desenvolvimento , Cognição/fisiologia , Corpo Estriado/crescimento & desenvolvimento , Emoções/fisiologia , Imageamento por Ressonância Magnética/métodos , Vias Neurais/crescimento & desenvolvimento , Adolescente , Criança , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Individualidade , Análise de Classes Latentes , Estudos Longitudinais , Masculino , Tamanho do Órgão
18.
Neuroimage ; 264: 119745, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368502

RESUMO

Puberty is a period of substantial hormonal fluctuations, and pubertal hormones can modulate structural and functional changes in the developing brain. Many previous studies have characterized the neural oscillatory responses serving movement, which include a beta event-related desynchronization (ERD) preceding movement onset, gamma and theta responses coinciding with movement execution, and a post-movement beta-rebound (PMBR) response following movement offset. While a few studies have investigated the developmental trajectories of these neural oscillations serving motor control, the impact of pubertal hormone levels on the maturation of these dynamics has not yet been examined. Since the timing and tempo of puberty varies greatly between individuals, pubertal hormones may uniquely impact the maturation of motor cortical oscillations distinct from other developmental metrics, such as age. In the current study we quantified these oscillations using magnetoencephalography (MEG) and utilized chronological age and measures of endogenous testosterone as indices of development during the transition from childhood to adolescence in 69 youths. Mediation analyses revealed complex maturation patterns for the beta ERD, in which testosterone predicted both spontaneous baseline and ERD power through direct and indirect effects. Age, but not pubertal hormones, predicted motor-related theta, and no relationships between oscillatory responses and developmental metrics were found for gamma or PMBR responses. These findings provide novel insight into how pubertal hormones affect motor-related oscillations, and highlight the continued development of motor cortical dynamics throughout the pubertal period.


Assuntos
Ritmo beta , Córtex Motor , Adolescente , Humanos , Criança , Ritmo beta/fisiologia , Testosterona , Magnetoencefalografia , Córtex Motor/fisiologia , Movimento/fisiologia , Congêneres da Testosterona
19.
Hum Brain Mapp ; 43(13): 4091-4102, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35583310

RESUMO

Traumatic experiences during childhood can have profound effects on stress sensitive brain structures (e.g., amygdala and hippocampus) and the emergence of psychiatric symptoms. Recent theoretical and empirical work has delineated dimensions of trauma (i.e., threat and deprivation) as having distinct neural and behavioral effects, although there are few longitudinal examinations. A sample of 243 children and adolescents were followed for three time points, with each assessment approximately 1 year apart (ages 9-15 years at Time 1; 120 males). Participants or their caregiver reported on youths' threat exposure, perceived stress (Time 1), underwent a T1-weighted structural high-resolution MRI scan (Time 2), and documented their subsequent psychiatric symptoms later in development (Time 3). The primary findings indicate that left amygdala volume, in particular, mediated the longitudinal association between threat exposure and subsequent internalizing and externalizing symptomatology. Greater threat exposure related to reduced left amygdala volume, which in turn differentially predicted internalizing and externalizing symptoms. Decreased bilateral hippocampal volume was related to subsequently elevated internalizing symptoms. These findings suggest that the left amygdala is highly threat-sensitive and that stress-related alterations may partially explain elevated psychopathology in stress-exposed adolescents. Uncovering potential subclinical and/or preclinical predictive biomarkers is essential to understanding the emergence, progression, and eventual targeted treatment of psychopathology following trauma exposure.


Assuntos
Tonsila do Cerebelo , Transtornos Mentais , Adolescente , Tonsila do Cerebelo/diagnóstico por imagem , Criança , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos Mentais/diagnóstico por imagem
20.
Hum Brain Mapp ; 43(17): 5154-5166, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778797

RESUMO

The adolescent brain undergoes tremendous structural and functional changes throughout puberty. Previous research has demonstrated that pubertal hormones can modulate sexually dimorphic changes in cortical development, as well as age-related maturation of the neural activity underlying cognitive processes. However, the precise impact of pubertal hormones on these functional changes in the developing human brain remains poorly understood. In the current study, we quantified the neural oscillatory activity serving visuospatial processing using magnetoencephalography, and utilized measures of dehydroepiandrosterone (DHEA) as an index of development during the transition from childhood to adolescence (i.e., puberty). Within a sample of typically developing youth (ages 9-15), a novel association between pubertal DHEA and theta oscillatory activity indicated that less mature children exhibited stronger neural responses in higher-order prefrontal cortices during the visuospatial task. Theta coherence between bilateral prefrontal regions also increased with increasing DHEA, such that network-level theta activity became more distributed with more maturity. Additionally, significant DHEA-by-sex interactions in the gamma range were centered on cortical regions relevant for attention processing. These findings suggest that pubertal DHEA may modulate the development of neural oscillatory activity serving visuospatial processing and attention functions during the pubertal period.


Assuntos
Encéfalo , Magnetoencefalografia , Adolescente , Criança , Humanos , Encéfalo/fisiologia , Puberdade/fisiologia , Córtex Pré-Frontal , Desidroepiandrosterona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA