Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Tipo de estudo
Intervalo de ano de publicação
1.
J Med Internet Res ; 25: e40306, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37223987

RESUMO

Understanding and optimizing adolescent-specific engagement with behavior change interventions will open doors for providers to promote healthy changes in an age group that is simultaneously difficult to engage and especially important to affect. For digital interventions, there is untapped potential in combining the vastness of process-level data with the analytical power of artificial intelligence (AI) to understand not only how adolescents engage but also how to improve upon interventions with the goal of increasing engagement and, ultimately, efficacy. Rooted in the example of the INSPIRE narrative-centered digital health behavior change intervention (DHBCI) for adolescent risky behaviors around alcohol use, we propose a framework for harnessing AI to accomplish 4 goals that are pertinent to health care providers and software developers alike: measurement of adolescent engagement, modeling of adolescent engagement, optimization of current interventions, and generation of novel interventions. Operationalization of this framework with youths must be situated in the ethical use of this technology, and we have outlined the potential pitfalls of AI with particular attention to privacy concerns for adolescents. Given how recently AI advances have opened up these possibilities in this field, the opportunities for further investigation are plenty.


Assuntos
Comportamento do Adolescente , Inteligência Artificial , Adolescente , Humanos , Comportamentos Relacionados com a Saúde , Software , Assunção de Riscos
2.
J Am Chem Soc ; 142(36): 15575-15584, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32804495

RESUMO

"Smart" biomaterials that are responsive to physiological or biochemical stimuli have found many biomedical applications for tissue engineering, therapeutics, and molecular imaging. In this work, we describe in situ polymerization of activatable biorthogonal small molecules in response to a reducing environment change in vivo. We designed a carbohydrate linker- and cyanobenzothiazole-cysteine condensation reaction-based small molecule scaffold that can undergo rapid condensation reaction upon physiochemical changes (such as a reducing environment) to form polymers (pseudopolysaccharide). The fluorescent and photoacoustic properties of a fluorophore-tagged condensation scaffold before and after the transformation have been examined with a dual-modality optical imaging method. These results confirmed the in situ polymerization of this probe after both local and systemic administration in living mice.


Assuntos
Benzotiazóis/química , Carboidratos/química , Cisteína/química , Corantes Fluorescentes/química , Nitrilas/química , Imagem Óptica , Polimerização , Animais , Linhagem Celular Tumoral , Feminino , Corantes Fluorescentes/síntese química , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/diagnóstico por imagem , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA