Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 48(2): 1475-1483, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33492574

RESUMO

Rutin is an important flavonoid consumed in the daily diet. It is also known as vitamin P and has been extensively investigated due to its pharmacological properties. On the other hand, neuronal death induced by glutamate excitotoxicity is present in several diseases including neurodegenerative diseases. The neuroprotective properties of rutin have been under investigation, although its mechanism of action is still poorly understood. We hypothesized that the mechanisms of neuroprotection of rutin are associated with the increase in glutamate metabolism in astrocytes. This study aimed to evaluate the protective effects of rutin with a focus on the modulation of glutamate detoxification. We used brain organotypic cultures from post-natal Wistar rats (P7-P9) treated with rutin to evaluate neural cell protection and levels of proteins involved in the glutamate metabolism. Moreover, we used cerebral cortex slices from adult Wistar rats to evaluate glutamate uptake. We showed that rutin inhibited the cell death and loss of glutamine synthetase (GS) induced by glutamate that was associated with an increase in glutamate-aspartate transporter (GLAST) in brain organotypic cultures from post-natal Wistar rats. Additionally, it was observed that rutin increased the glutamate uptake in cerebral cortex slices from adult Wistar rats. We conclude that rutin is a neuroprotective agent that prevents glutamate excitotoxicity and thereof suggest that this effect involves the regulation of astrocytic metabolism.


Assuntos
Morte Celular/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Neurônios/efeitos dos fármacos , Rutina/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Transportador 1 de Aminoácido Excitatório , Glutamato-Amônia Ligase/genética , Ácido Glutâmico/toxicidade , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/metabolismo , Neurotoxinas/toxicidade , Ratos , Ratos Wistar
2.
Discov Nano ; 19(1): 142, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240502

RESUMO

Cancer is highlighted as a major global health challenge in the XXI century. The cyclooxygenase-2 (COX-2) enzyme rises as a widespread tumor progression marker. Celecoxib (CXB) is a selective COX-2 inhibitor used in adjuvant cancer therapy, but high concentrations are required in humans. In this sense, the development of nanocarriers has been proposed once they can improve the biopharmaceutical, pharmacokinetic and pharmacological properties of drugs. In this context, this article reviews the progress in the development of CXB-loaded nanocarriers over the past decade and their prospects. Recent advances in the field of CXB-loaded nanocarriers demonstrate the use of complex formulations and the increasing importance of in vivo studies. The types of CXB-loaded nanocarriers that have been developed are heterogeneous and based on polymers and lipids together or separately. It was found that the work on CXB-loaded nanocarriers is carried out using established techniques and raw materials, such as poly (lactic-co-glicolic acid), cholesterol, phospholipids and poly(ethyleneglycol). The main improvements that have been achieved are the use of cell surface ligands, the simultaneous delivery of different synergistic agents, and the presence of materials that can provide imaging properties and other advanced features. The combination of CXB with other anti-inflammatory drugs and/or apoptosis inducers appears to hold effective pharmacological promise. The greatest advance to date from a clinical perspective is the ability of CXB to enhance the cytotoxic effects of established chemotherapeutic agents.

3.
Neurotox Res ; 40(6): 2135-2147, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35997936

RESUMO

Studies showed that JM-20, a benzodiazepine-dihydropyridine hybrid molecule, protects against rotenone and 6-hydroxydopamine neurotoxicity. However, its protective effects against cytotoxicity induced by endogenous neurotoxins involved in Parkinson's disease (PD) pathogenesis have never been investigated. In this study, we evaluated the ability of JM-20 to inhibit alpha-synuclein (aSyn) aggregation. We also evaluated the interactions of JM-20 with aSyn by molecular docking and molecular dynamics and assessed the protective effect of JM-20 against aminochrome cytotoxicity. We demonstrated that JM-20 induced the formation of heterogeneous amyloid fibrils, which were innocuous to primary cultures of mesencephalic cells. Moreover, JM-20 reduced the average size of aSyn positive inclusions in H4 cells transfected with SynT wild-type and synphilin-1-V5, but not in HEK cells transfected with synphilin-1-GFP. In silico studies showed the interaction between JM-20 and the aSyn-binding site. Additionally, we showed that JM-20 protects SH-SY5Y cells against aminochrome cytotoxicity. These results reinforce the potential of JM-20 as a neuroprotective compound for PD and suggest aSyn as a molecular target for JM-20.


Assuntos
Di-Hidropiridinas , Neuroblastoma , Doença de Parkinson , Humanos , alfa-Sinucleína , Benzodiazepinas , Simulação de Acoplamento Molecular , Doença de Parkinson/tratamento farmacológico
4.
Biosens Bioelectron ; 210: 114211, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35468419

RESUMO

Composite materials have gained significant attention owing to the synergistic effects of their constituent materials, thereby facilitating their utilization in new applications or in improving the existing ones. In this study, a composite based on nickel phthalocyanine (NiTsPc), zinc oxide nanoparticles (ZnONPs), and carbon nanotubes (CNT) was developed and subsequently immobilized on a pyrolytic graphite electrode (PGE). The PGE/NiTsPc-ZnONPs-CNT was identified as a selective catalytic hybrid system for detection of neurotransmitter dopamine (DA). The electrochemical and morphological characterizations were conducted using atomic force microscopy (AFM). Chronoamperometry and differential pulse voltammetry (DPV) were used to detect DA and detection limits of 24 nM and 7.0 nM was found, respectively. In addition, the effects of some possible DA interferents, such as ascorbic acid, uric acid, and serotonin, on DA response were evaluated. Their presence did not show significant variations in the DA electrochemical response. The high specificity and sensitivity of PGE/NiTsPc-ZnONPs-CNT for DA enabled its direct detection in human serum without sample pretreatment as well as in DA-enriched serum samples, whose recovery levels were close to 100%, thereby confirming the effectiveness of the proposed method. In general, PGE/NiTsPc-ZnONPs-CNT is a promising candidate for future applications in clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas , Nanotubos de Carbono , Óxido de Zinco , Humanos , Ácido Ascórbico/química , Dopamina/química , Técnicas Eletroquímicas/métodos , Eletrodos , Grafite/química , Indóis , Isoindóis , Nanopartículas/química , Nanotubos de Carbono/química , Níquel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA