Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38831121

RESUMO

Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.

2.
Cancer Lett ; 565: 216210, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150501

RESUMO

Cancer cells use acetate to support the higher demand for energy and lipid biosynthesis during uncontrolled cell proliferation, as well as for acetylation of regulatory proteins. Acyl-CoA thioesterase 12 (Acot12) is the enzyme that hydrolyzes acetyl-CoA to acetate in liver cytosol and is downregulated in hepatocellular carcinoma (HCC). A mechanistic role for Acot12 in hepatocarcinogenesis was assessed in mice in response to treatment with diethylnitrosamine(DEN)/carbon tetrachloride (CCl4) administration or prolonged feeding of a diet that promotes non-alcoholic steatohepatitis (NASH). Relative to controls, Acot12-/- mice exhibited accelerated liver tumor formation that was characterized by the hepatic accumulation of glycerolipids, including lysophosphatidic acid (LPA), and that was associated with reduced Hippo signaling and increased yes-associated protein (YAP)-mediated transcriptional activity. In Acot12-/- mice, restoration of hepatic Acot12 expression inhibited hepatocarcinogenesis and YAP activation, as did knockdown of hepatic YAP expression. Excess LPA produced due to deletion of Acot12 signaled through LPA receptors (LPARs) coupled to Gα12/13 subunits to suppress YAP phosphorylation, thereby promoting its nuclear localization and transcriptional activity. These findings identify a protective role for Acot12 in suppressing hepatocarcinogenesis by limiting biosynthesis of glycerolipids including LPA, which preserves Hippo signaling.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Via de Sinalização Hippo , Neoplasias Hepáticas/patologia , Fatores de Transcrição/genética , Proteínas de Sinalização YAP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA