RESUMO
The G12D mutation is among the most common KRAS mutations associated with cancer, in particular, pancreatic cancer. Here, we have developed monobodies, small synthetic binding proteins, that are selective to KRAS(G12D) over KRAS(wild type) and other oncogenic KRAS mutations, as well as over the G12D mutation in HRAS and NRAS. Crystallographic studies revealed that, similar to other KRAS mutant-selective inhibitors, the initial monobody bound to the S-II pocket, the groove between switch II and α3 helix, and captured this pocket in the most widely open form reported to date. Unlike other G12D-selective polypeptides reported to date, the monobody used its backbone NH group to directly recognize the side chain of KRAS Asp12, a feature that closely resembles that of a small-molecule inhibitor, MTRX1133. The monobody also directly interacted with H95, a residue not conserved in RAS isoforms. These features rationalize the high selectivity toward the G12D mutant and the KRAS isoform. Structure-guided affinity maturation resulted in monobodies with low nM KD values. Deep mutational scanning of a monobody generated hundreds of functional and nonfunctional single-point mutants, which identified crucial residues for binding and those that contributed to the selectivity toward the GTP- and GDP-bound states. When expressed in cells as genetically encoded reagents, these monobodies engaged selectively with KRAS(G12D) and inhibited KRAS(G12D)-mediated signaling and tumorigenesis. These results further illustrate the plasticity of the S-II pocket, which may be exploited for the design of next-generation KRAS(G12D)-selective inhibitors.
Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Mutação , Transformação Celular Neoplásica/genética , Carcinogênese , Neoplasias Pancreáticas/genéticaRESUMO
RAS mutants are major therapeutic targets in oncology with few efficacious direct inhibitors available. The identification of a shallow pocket near the Switch II region on RAS has led to the development of small-molecule drugs that target this site and inhibit KRAS(G12C) and KRAS(G12D). To discover other regions on RAS that may be targeted for inhibition, we have employed small synthetic binding proteins termed monobodies that have a strong propensity to bind to functional sites on a target protein. Here, we report a pan-RAS monobody, termed JAM20, that bound to all RAS isoforms with nanomolar affinity and demonstrated limited nucleotide-state specificity. Upon intracellular expression, JAM20 potently inhibited signaling mediated by all RAS isoforms and reduced oncogenic RAS-mediated tumorigenesis in vivo. NMR and mutation analysis determined that JAM20 bound to a pocket between Switch I and II, which is similarly targeted by low-affinity, small-molecule inhibitors, such as BI-2852, whose in vivo efficacy has not been demonstrated. Furthermore, JAM20 directly competed with both the RAF(RBD) and BI-2852. These results provide direct validation of targeting the Switch I/II pocket for inhibiting RAS-driven tumorigenesis. More generally, these results demonstrate the utility of tool biologics as probes for discovering and validating druggable sites on challenging targets.
Assuntos
Produtos Biológicos , Proteínas Proto-Oncogênicas p21(ras) , Carcinogênese/genética , Genes ras , Humanos , Mutação , Nucleotídeos , Proteínas Proto-Oncogênicas p21(ras)/genéticaRESUMO
Ovarian cancer caused the highest cancer-related mortality among female reproductive system malignancies. Platinum-based chemotherapy is still the footstone of the chemotherapy for ovarian cancer. However, the molecular mechanisms underlying cisplatin insensitivity and resistance remain unclear. SHC SH2 domain-binding protein 1 (SHCBP1) plays critical roles in the progression and drug resistance of different types of cancer. However, the biological function of SHCBP1 in ovarian cancer progression and cisplatin resistance remains obscure. In this study, we found that SHCBP1 was upregulated in ovarian cancer and the upregulated SHCBP1 has growth-promoting effect on ovarian cancer cells. Furthermore, SHCBP1 silencing sensitize ovarian cancer cells to cisplatin (hereafter referred to as CDDP). Mechanism analysis revealed that SHCBP1 activated the Akt/mTOR pathway and further inhibited autophagy in ovarian cancer cells. Meanwhile, autophagy inhibitors combined with SHCBP1 knockdown enhances CDDP sensitivity. In addition, knockdown of SHCBP1 restricted the proliferation of tumors and increased the cisplatin sensitivity in vivo. These findings suggested that upregulated SHCBP1 promoted the proliferation and CDDP resistance of ovarian cancer. The combination of SHCBP1 inhibition and cisplatin treatment might lead to substantial progress in ovarian cancer targeted therapy.
RESUMO
Antibiotic resistance genes (ARGs) have been identified as emerging contaminants, raising concerns around the world. As environmentally friendly bioagents (BA), plant growth-promoting rhizobacteria (PGPR) have been used in agricultural systems. The introduction of BA will lead to the turnover of the microbial communities structure. Nevertheless, it is still unclear how the colonization of the invaded microorganisms could affects the rhizosphere resistome. Consequently, 190 ARGs and 25 integrative and conjugative elements (ICEs) were annotated using the metagenomic approach in 18 samples from the Solanaceae crop rhizosphere soil under BA and conventional treatment (CK) groups. Our study found that, after 90 days of treatment, ARG abundance was lower in the CK group than in the BA group. The results showed that aminoglycoside antibiotic resistance (OprZ), phenicol antibiotic resistance (OprN), aminoglycoside antibiotic resistance (ceoA/B), aminocoumarin antibiotic resistance (mdtB) and phenicol antibiotic resistance (MexW) syntenic with ICEs. Moreover, in 11 sequences, OprN (phenicol antibiotic resistance) was observed to have synteny with ICEPaeLESB58-1, indicating that the ICEs could contribute to the spread of ARGs. Additionally, the binning result showed that the potential bacterial hosts of the ARGs were beneficial bacteria which could promote the nutrition cycle, such as Haliangium, Nitrospira, Sideroxydans, Burkholderia, etc, suggesting that bacterial hosts have a great influence on ARG profiles. According to the findings, considering the dissemination of ARGs, BA should be applied with caution, especially the use of beneficial bacteria in BA. In a nutshell, this study offers valuable insights into ARGs pollution control from the perspective of the development and application of BA, to make effective strategies for blocking pollution risk migration in the ecological environment.
RESUMO
Flue-cured tobacco (Nicotiana tabacum L.) is a significant cash crop globally. In August 2022, necrotic lesions on stem associated with root rot and wilting were observed on flue-cured tobacco (Cv. Yunyan 87) in fields located in Banxin village (27.95N,109.60E) of Fenghuang county in Xiangxi Autonomous Prefecture, Hunan Province, China. The affected and damaged area of tobacco is approximately 10 hectares, with adisease incidence of 60%. Lots of small black speckling within the lower stem of the affected plant, vascular tissue changed to black, dry rot, and looked like charcoal breezes. Small pieces were cut from healthy and diseased tissues, surface sterilized with 5% NaClO for 3 min and 75% ethanol for 1 min, rinsed with sterile distilled water and air-drying, incubated on oat medium incubated at 28â for five days. These isolates grew fast and produced typical black microsclerotia. The morphological were septate hyphae and microsclerotia. The microsclerotia were black and regularly round, with a 42.5 - 92.9 µm diameter. These morphological features were consistent with Macrophomina phaseolina (Smith and Wyllie 1999). The internal transcribed spacer (ITS) rDNA and translation elongation factor 1-α (TEF1-α) genes of three representative isolates were amplified and sequenced using the primers ITS1/ITS4 and EF1-728F/EF2R (Machado et al. 2019). Our resulting sequences (GenBank accessions OR435093, OR435101, OR435102 for ITS; OR891780, OR891781 and OR891782 for EF1-α) showed 99-100% similarity with M. phaseolina by NCBI blast. Phylogenetic analysis was conducted using MEGA-X software with the NJ method. The combined sequences grouped with isolates to M. phaseolina with 100% bootstrap support. The strain XF22 has been sent to the China General Microbiological Culture Collection Center (CGMCC3.25349). Pathogenicity tests were conducted by inoculating potted plants (six plants per isolate, three times) from 45 day-old tobacco seedlings cv. Yunyan 87. Stems were randomly gently scratched with sterile needles, and a 5 mm agar disc with mycelium of the pathogen was attached to the surface of each wound, with a sterilized agar disc as control. Inoculated seedlings were incubated in growth chambers at 26â and 60% RH with a 12 h photoperiod/day. After ten days, symptoms that brown or black lesions on the inoculated lesions were dotted with numerous black, hard microsclerotia similar to those naturally occurring on the diseased plants, but not on the control plants. The same pathogen was re-isolated consistently, fulfilling Koch's postulates. Based on morphological, molecular, and pathogenicity test results, these isolates were identified as M. phaseolina. Charcoal rot of tobacco, caused by M. phaseolina was previously found in Guangxi in 1989 (Zhu et al. 2002), while this is the first report of M. phaseolina causing charcoal rot on flue-cured tobacco in Hunan, China. We speculate that the planting area is influenced by the preceding crop sesame. The soil carries M. phaseolina, which can cause stem rot of sesame, leading to the occurrence of tobacco charcoal rot. Our results indicated that charcoal rot caused by M. phaseolina is a new threat to flue-cured tobacco production and lue-cured tobacco might be acting as a reservoir and spreading this pathogen to other economically crops in China.
RESUMO
Mutations in one of the three RAS genes (HRAS, KRAS, and NRAS) are present in nearly 20% of all human cancers. These mutations shift RAS to the GTP-loaded active state due to impairment in the intrinsic GTPase activity and disruption of GAP-mediated GTP hydrolysis, resulting in constitutive activation of effectors such as RAF. Because activation of RAF involves dimerization, RAS dimerization has been proposed as an important step in RAS-mediated activation of effectors. The α4-α5 allosteric lobe of RAS has been proposed as a RAS dimerization interface. Indeed, the NS1 monobody, which binds the α4-α5 region within the RAS G domain, inhibits RAS-dependent signaling and transformation as well as RAS nanoclustering at the plasma membrane. Although these results are consistent with a model in which the G domain dimerizes through the α4-α5 region, the isolated G domain of RAS lacks intrinsic dimerization capacity. Furthermore, prior studies analyzing α4-α5 point mutations have reported mixed effects on RAS function. Here, we evaluated the activity of a panel of single amino acid substitutions in the α4-α5 region implicated in RAS dimerization. We found that these proposed "dimerization-disrupting" mutations do not significantly impair self-association, signaling, or transformation of oncogenic RAS. These results are consistent with a model in which activated RAS protomers cluster in close proximity to promote the dimerization of their associated effector proteins (e.g., RAF) without physically associating into dimers mediated by specific molecular interactions. Our findings suggest the need for a nonconventional approach to developing therapeutics targeting the α4-α5 region.
Assuntos
Genes ras , Transdução de Sinais , Humanos , Ligação Proteica , Transdução de Sinais/genética , Mutação , Guanosina Trifosfato/genéticaRESUMO
Correlating the structure and dynamics of proteins with biological function is critical to understanding normal and dysfunctional cellular mechanisms. We describe a quantitative method of hydroxyl radical generation via Fe(II)-ethylenediaminetetraacetic acid (EDTA)-catalyzed Fenton chemistry that provides ready access to protein oxidative footprinting using equipment commonly found in research and process control laboratories. Robust and reproducible dose-dependent oxidation of protein samples is observed and quantitated by mass spectrometry with as fine a single residue resolution. An oxidation analysis of lysozyme provides a readily accessible benchmark for our method. The efficacy of our oxidation method is demonstrated by mapping the interface of a RAS-monobody complex, the surface of the NIST mAb, and the interface between PRC2 complex components. These studies are executed using standard laboratory tools and a few pennies of reagents; the mass spectrometry analysis can be streamlined to map the protein structure with single amino acid residue resolution.
Assuntos
Radical Hidroxila , Proteínas , Ácido Edético/química , Radical Hidroxila/química , Proteínas/análise , Pegadas de Proteínas/métodos , Estresse Oxidativo , OxirreduçãoRESUMO
Phytoremediation technology is an important approach applied to heavy metal remediation, and how to improve its remediation efficiency is the key. In this study, we compared the rhizospheric bacterial communities and metals contents in Miscanthus floridulus (M. floridulus) of four towns, including Huayuan Town (HY), Longtan Town (LT), Maoer Village (ME), and Minle Town (ML) around the lead-zinc mining area in Huayuan County, China. The roles of rhizospheric bacterial communities in assisting the phytoremediation of M. floridulus were explored. It was found that the compositions of the rhizospheric bacterial community of M. floridulus differed in four regions, but majority of them were heavy metal-resistant bacteria that could promote plant growth. Results of bioconcentration factors showed the enrichment of Cu, Zn, and Pb by M. floridulus in these four regions were significantly different. The Zn enrichment capacity of ML was the strongest for Cu and stronger than LT and ME for Pb. The enrichment capacity of LT and ML was stronger than HY and ME. These bacteria may influence the different heavy metals uptake of M. floridulus by altering the soil physiochemical properties (e.g., soil peroxidase, pH and moisture content). In addition, co-occurrence network analysis also showed that LT and ML had higher network stability and complexity than HY and ME. Functional prediction analysis of the rhizospheric bacterial community showed that genes related to protein synthesis (e.g., zinc-binding alcohol dehydrogenase/oxidoreductase, Dtx R family transcriptional regulators and ACC deaminase) also contributed to phytoremediation in various ways. This study provides theoretical guidance for selecting suitable microorganisms to assist in the phytoremediation of heavy metals.
Assuntos
Metais Pesados , Poluentes do Solo , Chumbo/análise , Poluentes do Solo/análise , Metais Pesados/análise , Zinco/análise , Poaceae/química , Poaceae/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , SoloRESUMO
BACKGROUND: Circular RNAs (circRNAs) regulate various biological activities and have been shown to play crucial roles in hepatocellular carcinoma (HCC) progression. However, only a few coding circRNAs have been identified in cancers, and their roles in HCC remain elusive. This study aimed to identify coding circRNAs and explore their function in HCC. METHODS: CircMAP3K4 was selected from the CIRCpedia database. We performed a series of experiments to determine the characteristics and coding capacity of circMAP3K4. We then used in vivo and in vitro assays to investigate the biological function and mechanism of circMAP3K4 and its protein product, circMAP3K4-455aa, in HCC. RESULTS: We found circMAP3K4 to be an upregulated circRNA with coding potential in HCC. IGF2BP1 recognized the circMAP3K4 N6-methyladenosine modification and promoted its translation into circMAP3K4-455aa. Functionally, circMAP3K4-455aa prevented cisplatin-induced apoptosis in HCC cells by interacting with AIF, thus protecting AIF from cleavage and decreasing its nuclear distribution. Moreover, circMAP3K4-455aa was degraded through the ubiquitin-proteasome E3 ligase MIB1 pathway. Clinically, a high level of circMAP3K4 is an independent prognostic factor for adverse overall survival and adverse disease-free survival of HCC patients. CONCLUSIONS: CircMAP3K4 is a highly expressed circRNA in HCC. Driven by m6A modification, circMAP3K4 encoded circMAP3K4-455aa, protected HCC cells from cisplatin exposure, and predicted worse prognosis of HCC patients. Targeting circMAP3K4-455aa may provide a new therapeutic strategy for HCC patients, especially for those with chemoresistance. CircMAP3K4 is a highly expressed circRNA in HCC. Driven by m6A modification, IGF2BP1 facilitates circMAP3K4 peptide translation, then the circMAP3K4 peptide inhibits AIF cleavage and nuclear distribution, preventing HCC cells from cell death under stress and promoting HCC progression.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Adenosina/análogos & derivados , Apoptose , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/patologia , PeptídeosRESUMO
BACKGROUND: Cancer therapy has evolved from non-specific cytotoxic agents to a selective, mechanism-based approach that includes targeted agents and immunotherapy. Although the response to targeted therapies for unresectable hepatocellular carcinoma (HCC) is acceptable with the improved survival, the high tumor recurrence rate and drug-related side effects continue to be problematic. Given that immune checkpoint inhibitor alone are not robust enough to improve survival in unresectable HCC, growing evidence supports the combination of targeted therapy and immunotherapy with synergistic effect. METHODS: Online databases including PubMed, EMBASE, Cochrane Library, and Web of Science were searched for the studies that compared targeted monotherapy with the combination therapy of targeted drug and checkpoint inhibitors in unresectable HCC patients. Eligibility criteria were the presence of at least one measurable lesion as defined by the Response Evaluation Criteria in Solid Tumors (version 1.1) for unresectable HCC patients, an Eastern Cooperative Oncology Group performance status of 0-2, and a Child-Pugh score ≤ 7. Outcome measurements include overall survival (OS), progression-free survival (PFS), and treatment-related adverse event (TRAE). RESULTS: Three phase II/III randomized controlled trials were included in this study. The pooled results showed that combination therapy significantly improved survival than targeted monotherapy, in terms of OS (hazard ratio (HR) = 0.67; 95% confidence interval [CI]: 0.50-0.91) and PFS (HR = 0.58; 95% CI: 0.51-0.67), respectively. In the incidence of grade 3-5 TRAEs, the combination therapy was significantly higher than targeted monotherapy (odds ratio = 1.98; 95% CI: 1.13-3.48). CONCLUSION: For unresectable HCC, combined targeted drug and immunotherapy significantly improved survival compared with targeted monotherapy. However, the incidences of AEs of combinational therapy were higher than targeted monotherapy.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Inibidores de Checkpoint Imunológico , Recidiva Local de Neoplasia/tratamento farmacológico , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Fatores Imunológicos/uso terapêutico , Citotoxinas , Ensaios Clínicos Controlados Aleatórios como Assunto , Ensaios Clínicos Fase II como AssuntoRESUMO
A convenient route for the preparation of l-gulose and its C-6 derivatives starting from commercially available 2,3:5,6-diisopropylidene-d-mannofuranose via C-5 epimerization as the key step was developed. 1-O-Benzylation followed by regioselective hydrolysis of the 5,6-isopropylidene group furnished benzyl 2,3-isopropylidene-α-d-mannofuranoside, which was subjected upon regioselective one-pot 6-O-benzoylation and 5-O-mesylation, providing the corresponding 5-OMs-6-OBz derivative in excellent selectivity. Treatment of this mesylate compound with potassium t-butoxide to remove the benzoyl group followed by intramolecular SN2 inversion led to benzyl 5,6-anhydro-2,3-isopropylidene-ß-l-gulofuranoside, which could undergo not only nucleophilic substitutions to open the epoxide ring to give various C-6 derivatives, but also acidic hydrolysis to yield 1,6-anhydro-ß-l-gulopyranose for further transformation into l-gulopyranosyl pentaacetate.
Assuntos
Compostos de Epóxi , Mesilatos , Alcenos , Hexoses , PotássioRESUMO
The root phenotypic traits have been considered as important factors in shaping the rhizosphere microbiome and regulating plant growth. However, the relationships between root phenotypic traits and the rhizosphere bacterial community remain unclear. We investigated two fields with different developing tobacco roots by a long-term positioning test in Hengshi. The well-developed root system (WDR) showed much more superiority in root phenotypic traits, including total root length, total projection area, surface area, and root tip number, than the underdeveloped root system. The specific root traits in WDR provided more ecological niches for the rhizosphere microorganisms, contributing to a more diverse microbial community and a more complex microbial network. The total root length and root tip number were the key factors shaping bacterial communities in the rhizosphere. In turn, the phyla Acidobacteria and Bacteroidetes might play vital roles in modifying root development and promoting plant growth according to their positive correlation with root phenotypic traits. Linking root phenotypic traits to the microbiome may enhance our understanding of rhizospheric interactions and their roles in developing rhizosphere ecosystems.
Assuntos
Microbiota , Rizosfera , Bactérias/genética , Raízes de Plantas/microbiologia , Microbiologia do SoloRESUMO
OBJECTIVES: The purpose of this review was to appraise the quality of evidence of the existing publications on IR, and to perform a meta-analysis on the treatment outcomes of IR. METHODS: The specific PIO questions were as follows: Population: Patients with periapical periodontitis either before or after non-surgical endodontic therapy. INTERVENTION: IR performed with retrograde preparation and retrograde filling. OUTCOMES: the healing, treatment complications, and the factors influencing these outcomes after IR. Electronic and hand searches were performed in the Web of Science, PubMed, CINAHL, and Cochrane Library databases. Two authors independently screened the titles and abstracts for eligibility. The risk of bias was performed using the NIH Quality Assessment Tool, and each study was rated as "Good", "Fair" or "Poor". The analyses were performed on the treatment outcome (healing and complications), and the factors influencing the outcome of the procedure. RESULTS: Fourteen articles were included in the qualitative and quantitative syntheses. One was a prospective cohort study, and the other 13 were retrospective cohort studies. Overall, the evidence of this review was of poor-to-fair quality. The pooled healing rate was 80.2%, and there was a 21.7% of complication rate. Longer follow-up period, the presence of perio-endo disease, the use of non-bioceramic material as retrograde filling, longer extraoral time, and maxillary molar were found to be associated with lower healing rates. However, the differences between the subgroups were not statistically significant. CONCLUSIONS: The present review showed IR yielded a good overall healing rate with a low complication rate. Taking the quality of evidence into account, more high-quality studies are required to evaluate the validity of the factors that may influence the treatment outcome of IR.
Assuntos
Periodontite Periapical , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Periodontite Periapical/cirurgia , Resultado do TratamentoRESUMO
NADH dehydrogenase (ubiquinone) Fe-S protein 8 (NDUFS8) is a nuclear-encoded core subunit of human mitochondrial complex I. Defects in NDUFS8 are associated with Leigh syndrome and encephalomyopathy. Cell-penetrating peptide derived from the HIV-1 transactivator of transcription protein (TAT) has been successfully applied as a carrier to bring fusion proteins into cells without compromising the biological function of the cargoes. In this study, we developed a TAT-mediated protein transduction system to rescue complex I deficiency caused by NDUFS8 defects. Two fusion proteins (TAT-NDUFS8 and NDUFS8-TAT) were exogenously expressed and purified from Escherichia coli for transduction of human cells. In addition, similar constructs were generated and used in transfection studies for comparison. The results showed that both exogenous TAT-NDUFS8 and NDUFS8-TAT were delivered into mitochondria and correctly processed. Interestingly, the mitochondrial import of TAT-containing NDUFS8 was independent of mitochondrial membrane potential. Treatment with TAT-NDUFS8 not only significantly improved the assembly of complex I in an NDUFS8-deficient cell line, but also partially rescued complex I functions both in the in-gel activity assay and the oxygen consumption assay. Our current findings suggest the considerable potential of applying the TAT-mediated protein transduction system for treatment of complex I deficiency.
Assuntos
Complexo I de Transporte de Elétrons/deficiência , Potencial da Membrana Mitocondrial , Mitocôndrias/genética , Mitocôndrias/metabolismo , NADH Desidrogenase/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , NADH Desidrogenase/genética , Transporte Proteico , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genéticaRESUMO
In this study, a novel antiadhesion membrane made of polycaprolactone, gelatin, and chitosan was fabricated using the electrospinning technique. A series of polycaprolactone/gelatin/chitosan (PGC) electrospun membranes with different amounts of chitosan (0%, 0.5%, 1%, and 2% in weight percentage) was synthesized. The physicochemical properties and biocompatibility of the fabricated membranes were examined and compared with the aim to select an effective antiadhesion membrane. Scanning electron microscopy showed that these 4 electrospun membranes had similar fiber diameter and pore area, with no statistical differences between them. Furthermore, the contact angle decreased with increased chitosan content, indicating that chitosan may contribute to increased hydrophilic properties. The in vitro degradation test revealed that the higher chitosan content corresponded to a lower degradation rate in PGC membranes within 7 days. All PGC membranes exhibited similar cell proliferation; however, cell proliferation was lower than tissue culture polystyrene (P < 0.05). To compare antiadhesion ability, the adhesion between the cecum and abdominal wall was created in a rat model. Assessment after implantation of electrospun membranes revealed that PGCs with higher chitosan content (PGC2) had better antiadhesion effects, as evaluated by an adhesion score at day 14 postsurgery. Thus, PGC2 was effective in reducing the formation of tissue adhesion. Therefore, PGC electrospun membrane may provide a potential peritoneal antiadhesion barrier for clinical use.
Assuntos
Quitosana , Animais , Materiais Biocompatíveis , Gelatina , Membranas Artificiais , Poliésteres , Ratos , Alicerces TeciduaisRESUMO
Kinesin family member C1 (KIFC1) is implicated in the clustering of multiple centrosomes to maintain tumor survival and is thought to be an oncogene in several kinds of cancers. In our experiments, we first performed bioinformatics analysis to investigate the expression levels of KIFC1 in bladder cancer (BC) specimens and normal bladder epitheliums and then, using our samples, verified findings by quantitative real-time PCR and western blotting assays. All data showed that KIFC1 was significantly upregulated in BC specimens at both the mRNA and protein levels. Immunohistochemical studies in a cohort of 152 paraffin-embedded BC tissues displayed that upregulated expression of KIFC1 clearly correlated with pT status (P = .014) and recurrent status (P = .002). Kaplan-Meier survival analysis and log-rank test indicated that patients with BC with high KIFC1 expression had both shorter cancer-specific survival (P < .001) and recurrence-free survival time (P < .001) than those with low KIFC1 expression. Furthermore, ectopic downregulation of KIFC1 weakened BC cell proliferation and migration both in vitro and in vivo, whereas upregulation of KIFC1 enhanced this in vitro. Overexpression of KIFC1 phosphorylated GSK3ß and promoted Snail through activating AKT (protein kinase B0) to induce proliferation and epithelial-mesenchymal transition (EMT) and, therefore, substantially promoted BC migration and metastasis. Our study revealed an oncogenic role for KIFC1 to promote BC cell proliferation and EMT via Akt/GSK3ß signaling; KIFC1 might be a promising prognostic biomarker as well as a therapeutic target for BC.
Assuntos
Biomarcadores Tumorais/metabolismo , Transição Epitelial-Mesenquimal , Glicogênio Sintase Quinase 3 beta/metabolismo , Cinesinas/metabolismo , Recidiva Local de Neoplasia/diagnóstico , Neoplasias da Bexiga Urinária/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Intervalo Livre de Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , Fosforilação , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Regulação para Cima , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/mortalidade , Urotélio/patologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
PURPOSE: Combined information on single nucleotide polymorphisms and prostate specific antigen offers opportunities to improve the performance of screening by risk stratification. We aimed to predict the risk of prostate cancer based on prostate specific antigen together with single nucleotide polymorphism information. MATERIALS AND METHODS: We performed a prospective study of 20,575 men with prostate specific antigen testing and 4,967 with a polygenic risk score for prostate cancer based on 66 single nucleotide polymorphisms from the Finnish population based screening trial of prostate cancer and 5,269 samples of 7 single nucleotide polymorphisms from the Finnish prostate cancer DNA study. A Bayesian predictive model was built to estimate the risk of prostate cancer by sequentially combining genetic information with prostate specific antigen compared with prostate specific antigen alone in study subjects limited to those with prostate specific antigen 4 ng/ml or above. RESULTS: The posterior odds of prostate cancer based on 7 single nucleotide polymorphisms together with the prostate specific antigen level ranged from 3.7 at 4 ng/ml, 14.2 at 6 and 40.7 at 8 to 98.2 at 10 ng/ml. The ROC AUC was elevated to 88.8% (95% CI 88.6-89.1) for prostate specific antigen combined with the risk score based on 7 single nucleotide polymorphisms compared with 70.1% (95% CI 69.6-70.7) for prostate specific antigen alone. It was further escalated to 96.7% (95% CI 96.5-96.9) when all prostate cancer susceptibility polygenes were combined. CONCLUSIONS: Expedient use of multiple genetic variants together with information on prostate specific antigen levels better predicts the risk of prostate cancer than prostate specific antigen alone and allows for higher prostate specific antigen cutoffs. Combined information also provides a basis for risk stratification which can be used to optimize the performance of prostate cancer screening.
Assuntos
Antígeno Prostático Específico/sangue , Neoplasias da Próstata/diagnóstico , Teorema de Bayes , Biópsia , Detecção Precoce de Câncer , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Neoplasias da Próstata/sangue , Neoplasias da Próstata/genética , Medição de RiscoRESUMO
Considering the high complexity of local dimming backlight that is necessary to effectively suppress color breakups for field sequential color liquid crystal displays (FSC-LCDs), a global dimming-based solution is proposed. This solution involves considering that the color breakups mainly occur at object edges of an image. By introducing an algorithm to present the edge information in a single field, evaluating color breakup performances, and experimentally verifying based on a 240-Hz LCD, lighter color breakups are revealed compared with mainstream local dimming-based solutions. Therefore, the proposed solution can achieve FSC-LCDs with better performance and practicality for advanced display applications.
RESUMO
Quantum dots are fluorescent nanoparticles used to detect and image proteins and nucleic acids. Compared with organic dyes and fluorescent proteins, these nanocrystals have enhanced brightness, photostability, and wavelength tunability, but their larger size limits their use. Recently, multidentate polymer coatings have yielded stable quantum dots with small hydrodynamic dimensions (≤10 nm) due to high-affinity, compact wrapping around the nanocrystal. However, this coating technology has not been widely adopted because the resulting particles are frequently heterogeneous and clustered, and conjugation to biological molecules is difficult to control. In this article we develop new polymeric ligands and optimize coating and bioconjugation methodologies for core/shell CdSe/Cd(x)Zn(1-x)S quantum dots to generate homogeneous and compact products. We demonstrate that "ligand stripping" to rapidly displace nonpolar ligands with hydroxide ions allows homogeneous assembly with multidentate polymers at high temperature. The resulting aqueous nanocrystals are 7-12 nm in hydrodynamic diameter, have quantum yields similar to those in organic solvents, and strongly resist nonspecific interactions due to short oligoethylene glycol surfaces. Compared with a host of other methods, this technique is superior for eliminating small aggregates identified through chromatographic and single-molecule analysis. We also demonstrate high-efficiency bioconjugation through azide-alkyne click chemistry and self-assembly with hexa-histidine-tagged proteins that eliminate the need for product purification. The conjugates retain specificity of the attached biomolecules and are exceptional probes for immunofluorescence and single-molecule dynamic imaging. These results are expected to enable broad utilization of compact, biofunctional quantum dots for studying crowded macromolecular environments such as the neuronal synapse and cellular cytoplasm.
Assuntos
Acrilatos/química , Resinas Acrílicas/química , Técnicas Biossensoriais/métodos , Pontos Quânticos/química , Succinimidas/química , Compostos de Cádmio/química , DNA/química , Receptores ErbB/química , Humanos , Imunoconjugados/química , Ligantes , Compostos de Selênio/químicaRESUMO
Sharp-1 is a basic helix-loop-helix (bHLH) transcriptional repressor that is involved in a number of cellular processes. Our previous studies have demonstrated that Sharp-1 is a negative regulator of skeletal myogenesis and it blocks differentiation of muscle precursor cells by modulating the activity of MyoD. In order to understand its role in pre- and post-natal myogenesis, we assessed skeletal muscle development and freeze-injury-induced regeneration in Sharp-1-deficient mice. We show that embryonic skeletal muscle development is not impaired in the absence of Sharp-1; however, post-natally, the regenerative capacity is compromised. Although the initial phases of injury-induced regeneration proceed normally in Sharp-1(-/-) mice, during late stages, the mutant muscle exhibits necrotic fibers, calcium deposits and fibrosis. TGF-ß expression, as well as levels of phosphorylated Smad2 and Smad3, are sustained in the mutant tissue and treatment with decorin, which blocks TGF-ß signaling, improves the histopathology of Sharp-1(-/-) injured muscles. In vitro, Sharp-1 associates with Smad3, and its overexpression inhibits TGF-ß- and Smad3-mediated expression of extracellular matrix genes in myofibroblasts. These results demonstrate that Sharp-1 regulates muscle regenerative capacity, at least in part, by modulation of TGF-ß signaling.