Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Drug Resist Updat ; 73: 101028, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340425

RESUMO

AIMS: The overexpression of ABC transporters on cancer cell membranes is one of the most common causes of multidrug resistance (MDR). This study investigates the impact of ABCC1 and ABCG2 on the resistance to talazoparib (BMN-673), a potent poly (ADP-ribose) polymerase (PARP) inhibitor, in ovarian cancer treatment. METHODS: The cell viability test was used to indicate the effect of talazoparib in different cell lines. Computational molecular docking analysis was conducted to simulate the interaction between talazoparib and ABCC1 or ABCG2. The mechanism of talazoparib resistance was investigated by constructing talazoparib-resistant subline A2780/T4 from A2780 through drug selection with gradually increasing talazoparib concentration. RESULTS: Talazoparib cytotoxicity decreased in drug-selected or gene-transfected cell lines overexpressing ABCC1 or ABCG2 but can be restored by ABCC1 or ABCG2 inhibitors. Talazoparib competitively inhibited substrate drug efflux activity of ABCC1 or ABCG2. Upregulated ABCC1 and ABCG2 protein expression on the plasma membrane of A2780/T4 cells enhances resistance to other substrate drugs, which could be overcome by the knockout of either gene. In vivo experiments confirmed the retention of drug-resistant characteristics in tumor xenograft mouse models. CONCLUSIONS: The therapeutic efficacy of talazoparib in cancer may be compromised by its susceptibility to MDR, which is attributed to its interactions with the ABCC1 or ABCG2 transporters. The overexpression of these transporters can potentially diminish the therapeutic impact of talazoparib in cancer treatment.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Ftalazinas , Humanos , Animais , Feminino , Camundongos , Ribose/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias
2.
Drug Resist Updat ; 73: 101065, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367548

RESUMO

AIMS: To investigate the collateral sensitivity (CS) of ABCB1-positive multidrug resistant (MDR) colorectal cancer cells to the survivin inhibitor MX106-4C and the mechanism. METHODS: Biochemical assays (MTT, ATPase, drug accumulation/efflux, Western blot, RT-qPCR, immunofluorescence, flow cytometry) and bioinformatic analyses (mRNA-sequencing, reversed-phase protein array) were performed to investigate the hypersensitivity of ABCB1 overexpressing colorectal cancer cells to MX106-4C and the mechanisms. Synergism assay, long-term selection, and 3D tumor spheroid test were used to evaluate the anti-cancer efficacy of MX106-4C. RESULTS: MX106-4C selectively killed ABCB1-positive colorectal cancer cells, which could be reversed by an ABCB1 inhibitor, knockout of ABCB1, or loss-of-function ABCB1 mutation, indicating an ABCB1 expression and function-dependent mechanism. MX106-4C's selective toxicity was associated with cell cycle arrest and apoptosis through ABCB1-dependent survivin inhibition and activation on caspases-3/7 as well as modulation on p21-CDK4/6-pRb pathway. MX106-4C had good selectivity against ABCB1-positive colorectal cancer cells and retained this in multicellular tumor spheroids. In addition, MX106-4C could exert a synergistic anti-cancer effect with doxorubicin or re-sensitize ABCB1-positive cancer cells to doxorubicin by reducing ABCB1 expression in the cell population via long-term exposure. CONCLUSIONS: MX106-4C selectively kills ABCB1-positive MDR colorectal cancer cells via a novel ABCB1-dependent survivin inhibition mechanism, providing a clue for designing CS compound as an alternative strategy to overcome ABCB1-mediated colorectal cancer MDR.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Survivina/genética , Survivina/metabolismo , Survivina/farmacologia , Resistência a Múltiplos Medicamentos/genética , Sensibilidade Colateral a Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Antineoplásicos/uso terapêutico , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/farmacologia
3.
Bioorg Chem ; 135: 106481, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36966672

RESUMO

Three series of phenylurea indole derivatives were synthesized with potent inhibitory activities on ABCG2 with simple and efficient synthetic routes. Among these compounds, four phenylurea indole derivatives 3c-3f with extended π system were discovered as the most potent ABCG2 inhibitors, while these compounds showed no inhibition on ABCB1. Compounds 3c and 3f were selected for further investigation to explore the mechanisms of action on reversing ABCG2-mediated multidrug resistance (MDR). The results revealed that compounds 3c and 3f increased the accumulation of mitoxantrone (MX) in ABCG2-overexpressing cells, but they did not alter the expression level or localization of ABCG2 in cells. In addition, both 3c and 3f significantly stimulated the ATP hydrolysis of ABCG2 transporter indicating that they can be competitive substrates of ABCG2 transporter, and thereby increase the accumulation of mitoxantrone in ABCG2-overexpressing H460/MX20 cells. Both 3c and 3f was docked into the drug-binding site of the human ABCG2 transporter protein (PDB 6FFC) with high affinities. This study showed that extending the π system of phenylurea indole derivatives enhanced their inhibitory activities on ABCG2, which may provide a clue for the further research to discover more potent ABCG2 inhibitors.


Assuntos
Antineoplásicos , Humanos , Antineoplásicos/química , Mitoxantrona/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistencia a Medicamentos Antineoplásicos , Compostos de Fenilureia/farmacologia , Linhagem Celular Tumoral , Indóis/farmacologia , Proteínas de Neoplasias/metabolismo
4.
Drug Resist Updat ; 54: 100743, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513557

RESUMO

ATP-binding cassette (ABC) transporters mediate the ATP-driven translocation of structurally and mechanistically distinct substrates against steep concentration gradients. Among the seven human ABC subfamilies namely ABCA-ABCG, ABCC is the largest subfamily with 13 members. In this respect, 9 of the ABCC members are termed "multidrug resistance proteins" (MRPs1-9) due to their ability to mediate cancer multidrug resistance (MDR) by extruding various chemotherapeutic agents or their metabolites from tumor cells. Furthermore, MRPs are also responsible for the ATP-driven efflux of physiologically important organic anions such as leukotriene C4, folic acid, bile acids and cAMP. Thus, MRPs are involved in important regulatory pathways. Blocking the anticancer drug efflux function of MRPs has shown promising results in overcoming cancer MDR. As a result, many novel MRP modulators have been developed in the past decade. In the current review, we summarize the structure, tissue distribution, biological and pharmacological functions as well as clinical insights of MRPs. Furthermore, recent updates in MRP modulators and their therapeutic applications in clinical trials are also discussed.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/farmacologia , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Transporte Biológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos
5.
Cancer Sci ; 111(8): 2872-2882, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32478948

RESUMO

One pivotal factor that leads to multidrug resistance (MDR) is the overexpression of ABCG2. Therefore, tremendous effort has been devoted to the search of effective reversal agents to overcome ABCG2-mediated MDR. CC-671 is a potent and selective inhibitor of both TTK (human protein kinase monopolar spindle 1 [hMps1]) and CDC like kinase 2 (CLK2). It represents a new class of cancer therapeutic drugs. In this study, we show that CC-671 is an effective ABCG2 reversal agent that enhances the efficacy of chemotherapeutic drugs in ABCG2-overexpressing lung cancer cells. Mechanistic studies show that the reversal effect of CC-671 is primarily attributed to the inhibition of the drug efflux activity of ABCG2, which leads to an increased intracellular level of chemotherapeutic drugs. In addition, CC-671 does not alter the protein expression or subcellular localization of ABCG2. The computational molecule docking analysis suggests CC-671 has high binding affinity to the drug-binding site of ABCG2. In conclusion, we reveal the interaction between CC-671 and ABCG2, providing a rationale for the potential combined use of CC-671 with ABCG2 substrate to overcome MDR.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzamidas/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzamidas/uso terapêutico , Sítios de Ligação/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/patologia , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico
6.
Int J Mol Sci ; 21(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092870

RESUMO

The overexpressing ABCB1 transporter is one of the key factors leading to multidrug resistance (MDR). Thus, many ABCB1 inhibitors have been found to be able to overcome ABCB1-mediated MDR. However, some inhibitors also work as a substrate of ABCB1, which indicates that in order to achieve an effective reversal dosage, a higher concentration is needed to overcome the pumped function of ABCB1, which may concurrently increase the toxicity. WYE-354 is an effective and specific mTOR (mammalian target of rapamycin) inhibitor, which recently has been reported to reverse ABCB1-mediated MDR. In the current study, 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay was carried out to determine the cell viability and reversal effect of WYE-354 in parental and drug-resistant cells. Drug accumulation was performed to examine the effect of WYE-354 on the cellular accumulation of chemotherapeutic drugs. The ATPase (adenosine triphosphatase) activity of the ABCB1 transporter in the presence or absence of WYE-354 was conducted in order to determine the impact of WYE-354 on ATP hydrolysis. Western blot analysis and immunofluorescence assay were used to investigate the protein molecules related to MDR. In addition, the interaction between the WYE-354 and ABCB1 transporter was investigated via in silico analysis. We demonstrated that WYE-354 is a substrate of ABCB1, that the overexpression of the ABCB1 transporter decreases the efficacy of WYE-354, and that the resistant WYE-354 can be reversed by an ABCB1 inhibitor at a pharmacological achievable concentration. Furthermore, WYE-354 increased the intracellular accumulation of paclitaxel in the ABCB1-mediated MDR cell line, without affecting the corresponding parental cell line, which indicated that WYE-354 could compete with other chemotherapeutic drugs for the ABCB1 transporter substrate binding site. In addition, WYE-354 received a high score in the docking analysis, indicating a strong interaction between WYE-354 and the ABCB1 transporter. The results of the ATPase analysis showed that WYE-354 could stimulate ABCB1 ATPase activity. Treatment with WYE-354 did not affect the protein expression or subcellular localization of the ABCB1. This study provides evidence that WYE-354 is a substrate of the ABCB1 transporter, implicating that WYE-354 should be avoided for use in ABCB1-mediated MDR cancer.


Assuntos
Purinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Doxorrubicina/química , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Paclitaxel/química , Paclitaxel/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Purinas/química , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Verapamil/farmacologia
8.
Front Pharmacol ; 15: 1400699, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756373

RESUMO

The therapeutic effect of chemotherapy and targeted therapy are known to be limited by drug resistance. Substantial evidence has shown that ATP-binding cassette (ABC) transporters P-gp and BCRP are significant contributors to multidrug resistance (MDR) in cancer cells. In this study, we demonstrated that a clinical-staged ATR inhibitor ceralasertib is susceptible to P-gp and BCRP-mediated MDR. The drug resistant cancer cells were less sensitive to ceralasertib compared to the parental cells. Moreover, ceralasertib resistance can be reversed by inhibiting the drug efflux activity of P-gp and BCRP. Interestingly, ceralasertib was able to downregulate the level of P-gp but not BCRP, suggesting a potential regulation between ATR signaling and P-gp expression. Furthermore, computational docking analysis predicted high affinities between ceralasertib and the drug-binding sites of P-gp and BCRP. In summary, overexpression of P-gp and BCRP are sufficient to confer cancer cells resistance to ceralasertib, underscoring their role as biomarkers for therapeutic efficacy.

9.
J Transl Int Med ; 12(3): 288-298, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39081282

RESUMO

Background and Objectives: Overcoming ATP-binding cassette subfamily G member 2 (ABCG2)-mediated multidrug resistance (MDR) has attracted the attention of scientists because one of the critical factors resulting in MDR in cancer is the overexpression of ABCG2. RN486, a Bruton's Tyrosine Kinase (BTK) inhibitor, was discovered to potentially reverse ABCB1-mediated MDR. However, there is still uncertainty about whether RN486 has a reversal off-target impact on ABCG2-mediated MDR. Methods: MTT assay was used to detect the reversal effect of RN486 on ABCG2-overexpressing cancer cells. The ABCG2 expression level and subcellular localization were examined by Western blotting and immunofluorescence. Drug accumulation and eflux assay and ATPase assay were performed to analyze the ABCG2 transporter function and ATPase activity. Molecular modeling predicted the binding between RN486 and ABCG2 protein. Results: Non-toxic concentrations of RN486 remarkably increased the sensitivity of ABCG2-overexpressing cancer cells to conventional anticancer drugs mitoxantrone and topotecan. The reversal mechanistic studies showed that RN486 elevated the drug accumulation because of reducing the eflux of ABCG2 substrate drug in ABCG2-overexpressing cancer cells. In addition, the inhibitory efect of RN486 on ABCG2-associated ATPase activity was also verified. Molecular docking study implied a strong binding afinity between RN486 and ABCG2 transporter. Meanwhile, the ABCG2 subcellular localization was not altered by the treatment of RN486, but the expression level of ABCG2 was down-regulated. Conclusions: Our studies propose that RN486 can antagonize ABCG2-mediated MDR in cancer cells via down-regulating the expression level of ABCG2 protein, reducing ATPase activity of ABCG2 transporter, and inhibiting the transporting function. RN486 could be potentially used in conjunction with chemotherapy to alleviate MDR mediated by ABCG2 in cancer.

10.
Biomolecules ; 13(2)2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36830622

RESUMO

A series of twenty-two quinazolinamine derivatives showing potent inhibitory activities on breast cancer resistance protein (BCRP) and p-glycoprotein (P-gp) were synthesized. A cyclopropyl-containing quinazolinamine 22 was identified as a dual BCRP and P-gp inhibitor, while azide-containing quinazolinamine 33 showed BCRP inhibitory activity. These lead compounds were further investigated in a battery of mechanistic experiments. Compound 22 changed the localization of BCRP and P-gp in cells, thus inhibiting the efflux of anticancer drugs by the two ATP-binding cassette (ABC) transporters. In addition, both 22 and 33 significantly stimulated the ATP hydrolysis of the BCRP transporter, indicating that they can be competitive substrates of the BCRP transporter, and thereby increase the accumulation of mitoxantrone in BCRP-overexpressing H460/MX20 cells. Azide derivative 33, exhibited a greater inhibitory effect on BCRP after UV activation and can serve as a valuable probe for investigating the interactions of quinazolinamine derivatives with BCRP. Notably, the dual BCRP and P-gp inhibitors 4-5, 22-24, 27, and BCRP inhibitor 33 showed improved metabolic stability compared to Ko143.


Assuntos
Azidas , Neoplasias da Mama , Humanos , Feminino , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina , Resistencia a Medicamentos Antineoplásicos
11.
MedComm (2020) ; 4(3): e265, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37229486

RESUMO

Resistance to cancer therapies has been a commonly observed phenomenon in clinical practice, which is one of the major causes of treatment failure and poor patient survival. The reduced responsiveness of cancer cells is a multifaceted phenomenon that can arise from genetic, epigenetic, and microenvironmental factors. Various mechanisms have been discovered and extensively studied, including drug inactivation, reduced intracellular drug accumulation by reduced uptake or increased efflux, drug target alteration, activation of compensatory pathways for cell survival, regulation of DNA repair and cell death, tumor plasticity, and the regulation from tumor microenvironments (TMEs). To overcome cancer resistance, a variety of strategies have been proposed, which are designed to enhance the effectiveness of cancer treatment or reduce drug resistance. These include identifying biomarkers that can predict drug response and resistance, identifying new targets, developing new targeted drugs, combination therapies targeting multiple signaling pathways, and modulating the TME. The present article focuses on the different mechanisms of drug resistance in cancer and the corresponding tackling approaches with recent updates. Perspectives on polytherapy targeting multiple resistance mechanisms, novel nanoparticle delivery systems, and advanced drug design tools for overcoming resistance are also reviewed.

12.
Front Pharmacol ; 14: 1290255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026953

RESUMO

Cancer is one of the leading causes of death worldwide, and the development of resistance to chemotherapy drugs is a major challenge in treating malignancies. In recent years, researchers have focused on understanding the mechanisms of multidrug resistance (MDR) in cancer cells and have identified the overexpression of ATP-binding cassette (ABC) transporters, including ABCC1/MRP1 and ABCC10/MRP7, as a key factor in the development of MDR. In this study, we aimed to investigate whether three drugs (sertraline, fluoxetine, and citalopram) from the selective serotonin reuptake inhibitor (SSRI) family, commonly used as antidepressants, could be repurposed as inhibitors of MRP1 and MRP7 transporters and reverse MDR in cancer cells. Using a combination of in silico predictions and in vitro validations, we analyzed the interaction of MRP1 and MRP7 with the drugs and evaluated their ability to hinder cell resistance. We used computational tools to identify and analyze the binding site of these three molecules and determine their binding energy. Subsequently, we conducted experimental assays to assess cell viability when treated with various standard chemotherapies, both with and without the presence of SSRI inhibitors. Our results show that all three SSRI drugs exhibited inhibitory/reversal effects in the presence of chemotherapies on both MRP1-overexpressed cells and MRP7-overexpressed cells, suggesting that these medications have the potential to be repurposed to target MDR in cancer cells. These findings may open the door to using FDA-approved medications in combination therapy protocols to treat highly resistant malignancies and improve the efficacy of chemotherapy treatment. Our research highlights the importance of investigating and repurposing existing drugs to overcome MDR in cancer treatment.

13.
Front Pharmacol ; 13: 861642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350768

RESUMO

Palbociclib was approved by the United States Food and Drug Administration for use, in combination with letrozole, as a first-line treatment for estrogen receptor-positive/human epidermal growth factor receptor 2-negative (ER+/HER2-) postmenopausal metastatic breast cancer. However, recent studies show that palbociclib may be an inhibitor of the ABCB1 transporter, although this remains to be elucidated. Therefore, we conducted experiments to determine the interaction of palbociclib with the ABCB1 transporter. Our in vitro results indicated that the efficacy of palbociclib was significantly decreased in the ABCB1-overexpressing cell lines. Furthermore, the resistance of ABCB1-overexpressing cells to palbociclib was reversed by 3 µM of the ABCB1 inhibitor, verapamil. Moreover, the incubation of ABCB1-overexpressing KB-C2 and SW620/Ad300 cells with up to 5 µM of palbociclib for 72 h, significantly upregulated the protein expression of ABCB1. The incubation with 3 µM of palbociclib for 2h significantly increased the intracellular accumulation of [3H]-paclitaxel, a substrate of ABCB1, in ABCB1 overexpressing KB-C2 cells but not in the corresponding non-resistant parental KB-3-1 cell line. However, the incubation of KB-C2 cells with 3 µM of palbociclib for 72 h decreased the intracellular accumulation of [3H]-paclitaxel due to an increase in the expression of the ABCB1 protein. Palbociclib produced a concentration-dependent increase in the basal ATPase activity of the ABCB1 transporter (EC50 = 4.73 µM). Molecular docking data indicated that palbociclib had a high binding affinity for the ABCB1 transporter at the substrate binding site, suggesting that palbociclib may compete with other ABCB1 substrates for the substrate binding site of the ABCB1. Overall, our results indicate that palbociclib is a substrate for the ABCB1 transporter and that its in vitro anticancer efficacy is significantly decreased in cancer cells overexpressing the ABCB1.

14.
Signal Transduct Target Ther ; 7(1): 358, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209270

RESUMO

Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis, treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression, metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies, including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC, particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.


Assuntos
Neoplasias Gástricas , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Receptores ErbB/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Proteína Supressora de Tumor p53
15.
Front Oncol ; 12: 949868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992866

RESUMO

Colorectal cancer is a major health problem, and it is the third most diagnosed cancer in the United States. The current treatment for colorectal cancer includes irinotecan, a topoisomerase I inhibitor, and other targeted drugs, such as bevacizumab and regorafenib. The low response rates and incidence of high toxicity caused by these drugs instigated an evaluation of the anticancer efficacy of a series of 13 thiazolyl hydrazone derivatives of 1-indanone, and four compounds among them show favorable anticancer activity against some of the tested colorectal cancer cell lines with IC50 values ranging from 0.41 ± 0.19 to 6.85 ± 1.44 µM. It is noteworthy that one of the indanone-based thiazolyl hydrazone (ITH) derivatives, N-Indan-1-ylidene-N'-(4-Biphenyl-4-yl-thiazol-2-yl)-hydrazine (ITH-6), has a better cytotoxicity profile against p53 mutant colorectal cancer cells HT-29, COLO 205, and KM 12 than a p53 wild-type colorectal cancer cell line, such as HCT 116. Mechanistic studies show that ITH-6 arrests these three cancer cell lines in the G2/M phase and induces apoptosis. It also causes a rise in the reactive oxygen species level with a remarkable decrease in the glutathione (GSH) level. Moreover, ITH-6 inhibits the expression of NF-κB p65 and Bcl-2, which proves its cytotoxic action. In addition, ITH-6 significantly decreased tumor size, growth rate, and tumor volume in mice bearing HT-29 and KM 12 tumor xenografts. Moreover, CRISPR/Cas9 was applied to establish an NF-κB p65 gene knockout HT-29 cell line model to validate the target of ITH-6. Overall, the results suggest that ITH-6 could be a potential anticancer drug candidate for p53 mutant colorectal cancers.

16.
Acta Pharm Sin B ; 12(5): 2609-2618, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35646541

RESUMO

Overexpression of ABCG2 transporter in cancer cells has been linked to the development of multidrug resistance (MDR), an obstacle to cancer therapy. Our recent study uncovered that the MET inhibitor, tepotinib, is a potent reversal agent for ABCB1-mediated MDR. In the present study, we reported for the first time that the MET inhibitor tepotinib can also reverse ABCG2-mediated MDR in vitro and in vivo by directly binding to the drug-binding site of ABCG2 and reversibly inhibiting ABCG2 drug efflux activity, therefore enhancing the cytotoxicity of substrate drugs in drug-resistant cancer cells. Furthermore, the ABCB1/ABCG2 double-transfected cell model and ABCG2 gene knockout cell model demonstrated that tepotinib specifically inhibits the two MDR transporters. In mice bearing drug-resistant tumors, tepotinib increased the intratumoral accumulation of ABCG2 substrate drug topotecan and enhanced its antitumor effect. Therefore, our study provides a new potential of repositioning tepotinib as an ABCG2 inhibitor and combining tepotinib with substrate drugs to antagonize ABCG2-mediated MDR.

17.
Front Pharmacol ; 13: 843829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281897

RESUMO

The KRAS-G12C inhibitor ARS-1620, is a novel specific covalent inhibitor of KRAS-G12C, possessing a strong targeting inhibitory effect on KRAS-G12C mutant tumors. Overexpression of ATP-binding cassette super-family B member 1 (ABCB1/P-gp) is one of the pivotal factors contributing to multidrug resistance (MDR), and its association with KRAS mutations has been extensively studied. However, the investigations about the connection between the inhibitors of mutant KRAS and the level of ABC transporters are still missing. In this study, we investigated the potential drug resistance mechanism of ARS-1620 associated with ABCB1. The desensitization effect of ARS-1620 was remarkably intensified in both drug-induced ABCB1-overexpressing cancer cells and ABCB1-transfected cells as confirmed by cell viability assay results. This desensitization of ARS-1620 could be completely reversed when co-treated with an ABCB1 reversal agent. In mechanism-based studies, [3H] -paclitaxel accumulation assay revealed that ARS-1620 could be competitively pumped out by ABCB1. Additionally, it was found that ARS-1620 remarkably stimulated ATPase activity of ABCB1, and the HPLC drug accumulation assay displayed that ARS-1620 was actively transported out of ABCB1-overexpressing cancer cells. ARS-1620 acquired a high docking score in computer molecular docking analysis, implying ARS-1620 could intensely interact with ABCB1 transporters. Taken all together, these data indicated that ARS-1620 is a substrate for ABCB1, and the potential influence of ARS-1620-related cancer therapy on ABCB1-overexpressing cancer cells should be considered in future clinical applications.

18.
Acta Pharm Sin B ; 12(8): 3263-3280, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35967279

RESUMO

Multidrug resistance (MDR) is the main cause of clinical treatment failure and poor prognosis in cancer. Targeting P-glycoprotein (P-gp) has been regarded as an effective strategy to overcome MDR. In this work, we reported our preclinical studies of the triazolo[1,5-a]pyrimidine-based compound WS-716 as a highly potent, specific, and orally active P-gp inhibitor. Through direct binding to P-gp, WS-716 inhibited efflux function of P-gp and specifically reversed P-gp-mediated MDR to paclitaxel (PTX) in multiple resistant cell lines, without changing its expression or subcellular localization. WS-716 and PTX synergistically inhibited formation of colony and 3D spheroid, induced apoptosis and cell cycle arrest at G2/M phase in resistant SW620/Ad300 cells. In addition, WS-716 displayed minimal effect on the drug-metabolizing enzyme cytochrome P4503A4 (CYP3A4). Importantly, WS-716 increased sensitivity of both pre-clinically and clinically derived MDR tumors to PTX in vivo with the T/C value of 29.7% in patient-derived xenograft (PDX) models. Relative to PTX treatment alone, combination of WS-716 and PTX caused no obvious adverse reactions. Taken together, our preclinical studies revealed therapeutic promise of WS-716 against MDR cancer, the promising data warrant its further development for cancer therapy.

19.
MedComm (2020) ; 2(4): 765-777, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34977876

RESUMO

Multidrug resistance (MDR) has been extensively reported in colorectal cancer patients, which remains a major cause of chemotherapy failure. One of the critical mechanisms of MDR in colorectal cancer is the reduced intracellular drug level led by the upregulated expression of the ATP-binding cassette (ABC) transporters, particularly, ABCB1/P-gp. In this study, the CRISPR/Cas9 system was utilized to target ABCB1 in MDR colorectal cancer SW620/Ad300 cell line with ABCB1 overexpression. The results showed that stable knockout of ABCB1 gene by the CRISPR/Cas9 system was achieved in the MDR cancer cells. Reversal of MDR against ABCB1 chemotherapeutic drugs increased intracellular accumulation of [3H]-paclitaxel accumulation, and decreased drug efflux activity was observed in MDR SW620/Ad300 cells after ABCB1 gene knockout. Further tests using the 3D multicellular tumor spheroid model suggested that deficiency in ABCB1 restrained tumor spheroid growth and restore sensitivity to paclitaxel in MDR tumor spheroids. Overall, the CRISPR/Cas9 system targeting the ABCB1 gene can be an effective approach to overcome ABCB1-mediated MDR in colorectal cancer SW620/Ad300 cells.

20.
Front Cell Dev Biol ; 9: 697927, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336849

RESUMO

Overexpression of ATP-binding cassette transporter superfamily G member 2 (ABCG2), is known as a major mechanism mediating multidrug resistance (MDR) in cancer cells. MLN7243 is a small-molecule ubiquitin activating enzyme inhibitor currently under clinical investigation. The aim of the current study is to determine if MLN7243 is a substrate of MDR-related ABCG2 transporter. Our results showed that cancer cells overexpressing ABCG2 transporter were resistant to MLN7243 compared to the parental cells, while knockout of ABCG2 gene or pharmacological inhibition of ABCG2 efflux function completely reversed the drug resistance. Unexpectedly, the endogenous low expression of ABCG2 is sufficient to confer cancer cells resistance to MLN7243. The ABCG2 ATPase assay and HPLC assay suggested that MLN7243 can significantly stimulate ABCG2 ATPase activity and be pumped out from ABCG2-overexpressing cells by ABCG2. The docking analysis also implied that MLN7243 binds to ABCG2 drug-binding pocket with optimal binding affinity. However, MLN7243 did not competitively inhibit the efflux of other ABCG2 substrate drugs, indicating it may not serve as an MDR reversal agent. In conclusion, our study provides direct in vitro evidence to show that MLN7243 is a potent ABCG2 substrate. If our results can be translated to humans, it suggests that combining MLN7243 with ABCG2 inhibitors may enhance the anticancer efficacy for patients with high tumor ABCG2 level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA