RESUMO
Peroxisome proliferator-activated receptor-α (PPAR-α) belonging to the nuclear hormone receptor superfamily is a promising target for CVDs which mechanistically improves the production of high-density lipid as well as inhibit vascular smooth muscle cell proliferation. PPAR-α mainly interferes with adenosine monophosphate-activated protein kinase, transforming growth factor-ß-activated kinase, and nuclear factor-κB pathways to protect against cardiac complications. Natural products/extracts could serve as a potential therapeutic strategy in CVDs for targeting PPAR-α with broad safety margins. In recent years, the understanding of naturally derived PPAR-α agonists has considerably improved; however, the information is scattered. In vitro and in vivo studies on acacetin, apigenin, arjunolic acid, astaxanthin, berberine, resveratrol, vaticanol C, hispidulin, ginsenoside Rb3, and genistein showed significant effects in CVDs complications by targeting PPAR-α. With the aim of demonstrating the tremendous chemical variety of natural products targeting PPAR-α in CVDs, this review provides insight into various natural products that can work to prevent CVDs by targeting the PPAR-α receptor along with their detailed mechanism.
Assuntos
Produtos Biológicos , Doenças Cardiovasculares , Humanos , PPAR alfa , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Receptores Citoplasmáticos e Nucleares , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêuticoRESUMO
Swertia species are common ingredients in numerous herbal remedies. It is also used to treat a wide range of illnesses and possess diverse therapeutic activities. The aim of the study is to elucidate the comprehensive metabolomics profile of Swertia chirayita and the role of various extraction methods in the phytochemical compositions of the extracts of S. chirayita, and their antioxidant and enzyme inhibitory activities. Extraction of the stems, leaves, and flowering tops of S. chirayita was performed by maceration, infusion, and soxhlation using methanol and water as solvent. Extracts were subjected to phytochemical profiling by a liquid-chromatographic system. Antioxidant and enzyme inhibitory activity was carried out. The metabolomics profiling showed that a diverse range of specialized metabolites were present in the stems and leaves & flowering tops of the plant. All the extracts showed substantial antioxidant and enzyme inhibitory activities further confirmed by molecular docking studies. This study appraised the use of S. chirayita aerial parts as a potential antioxidant and its therapeutic application in various chronic illnesses including Alzheimer's disease, diabetes, and other skin-related disorders.
Assuntos
Antioxidantes , Swertia , Antioxidantes/farmacologia , Antioxidantes/química , Swertia/química , Extratos Vegetais/química , Himalaia , Simulação de Acoplamento Molecular , Compostos FitoquímicosRESUMO
Diploknema butyracea (Roxb) H.J Lam, also referred as "Kalpavriksha", is commonly known as Gophal, Cheura, or Indian butter tree. It is a deciduous tree with straight trunks of 15-20â m in height and white-yellow-coloured fragile flowers with fragrance, found at altitudes of 300-1500â m in the sub-Himalayan region of India, China, Nepal, and Bhutan. Diploknema have 11 taxa and 8 species, out of which 3 species are found in Uttarakhand hills, Sikkim, Darjeeling, Arunachal Pradesh, and Assam. The tree holds significant economic importance, serving various purposes within ethnic communities. Its high lipid content makes it valuable for food, medicine, construction, and the production of various value-added products. The ethno-pharmacological applications encompass treating rheumatism, burns, asthma, and various skin conditions. The plant's different components-bark, leaves, flowers, seeds, and fruits-contain a diverse array of phytoconstituents, including alkaloids, tannins, flavonoids, steroids, terpenoids, and palmitic acid, along with essential nutrients like sodium, calcium, potassium, iron, magnesium, zinc, and various sugars which shows diverse pharmacological and therapeutic activities. Beyond traditional uses, Diploknema is important for diverse industrial application in pharmaceuticals, confectionery, nutraceuticals, and cosmetics. Present paper is an attempt to understand comprehensive details on different aspects of this plant to explore new avenues for various value-added products.
RESUMO
The phosphatidylinositol 3-kinase (PI3K)-Akt and the mammalian target of rapamycin (mTOR) represent two vital intracellular signaling pathways, which are associated with various aspects of cellular functions. These functions play vital roles in quiescence, survival, and growth in normal physiological circumstances as well as in various pathological disorders, including cancer. These two pathways are so intimately connected to each other that in some instances these are considered as one unique pathway crucial for cell cycle regulation. The purpose of this review is to emphasize the role of PI3K-Akt-mTOR signaling pathway in different cancer conditions and the importance of natural products targeting the PI3K-Akt-mTOR signaling pathway. This review also aims to draw the attention of scientists and researchers to the assorted beneficial effects of the numerous classes of natural products for the development of new and safe drugs for possible cancer therapy. We also summarize and critically analyze various preclinical and clinical studies on bioactive compounds and constituents, which are derived from natural products, to target the PI3K-Akt-mTOR signaling pathway for cancer prevention and intervention.
Assuntos
Produtos Biológicos , Neoplasias , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismoRESUMO
Glioblastoma multiforme (GBM) is the most common form of brain cancer and one of the most aggressive cancers found in humans. Most of the signs and symptoms of GBM can be mild and slowly aggravated, although other symptoms might demonstrate it as an acute ailment. However, the precise mechanisms of the development of GBM remain unknown. Due to the improvement of molecular pathology, current researches have reported that glioma progression is strongly connected with different types of epigenetic phenomena, such as histone modifications, DNA methylation, chromatin remodeling, and aberrant microRNA. Furthermore, the genes and the proteins that control these alterations have become novel targets for treating glioma because of the reversibility of epigenetic modifications. In some cases, gene mutations including P16, TP53, and EGFR, have been observed in GBM. In contrast, monosomies, including removals of chromosome 10, particularly q23 and q25-26, are considered the standard markers for determining the development and aggressiveness of GBM. Recently, amid the epigenetic therapies, histone deacetylase inhibitors (HDACIs) and DNA methyltransferase inhibitors have been used for treating tumors, either single or combined. Specifically, HDACIs are served as a good choice and deliver a novel pathway to treat GBM. In this review, we focus on the epigenetics of GBM and the consequence of its mutations. We also highlight various treatment approaches, namely gene editing, epigenetic drugs, and microRNAs to combat GBM.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , MicroRNAs , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Metilação de DNA , Epigênese Genética , Epigenômica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioma/genética , Humanos , MicroRNAs/genéticaRESUMO
Vascular diseases arise due to vascular endothelium dysfunction in response to several pro-inflammatory stimuli and invading pathogens. Thickening of the vessel wall, formation of atherosclerotic plaques consisting of proliferating smooth muscle cells, macrophages and lymphocytes are the major consequences of impaired endothelium resulting in atherosclerosis, hypercholesterolemia, hypertension, type 2 diabetes mellitus, chronic renal failure and many others. Decreased nitric oxide (NO) bioavailability was found to be associated with anomalous endothelial function because of either its reduced production level by endothelial NO synthase (eNOS) which synthesize this potent endogenous vasodilator from L-arginine or its enhanced breakdown due to severe oxidative stress and eNOS uncoupling. Polyphenols are a group of bioactive compounds having more than 7000 chemical entities present in different cereals, fruits and vegetables. These natural compounds possess many OH groups which are largely responsible for their strong antioxidative, anti-inflammatory antithrombotic and anti-hypersensitive properties. Several flavonoid-derived polyphenols like flavones, isoflavones, flavanones, flavonols and anthocyanidins and non-flavonoid polyphenols like tannins, curcumins and resveratrol have attracted scientific interest for their beneficial effects in preventing endothelial dysfunction. This article will focus on in vitro as well as in vivo and clinical studies evidences of the polyphenols with eNOS modulating activity against vascular disease condition while their molecular mechanism will also be discussed.
Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão , Humanos , Polifenóis/farmacologia , Polifenóis/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Endotélio Vascular , Óxido NítricoRESUMO
Clenbuterol is a potent beta-2 agonist widely misused by professional athletes and bodybuilders. Information on clenbuterol associated adverse events is present in case reports and case series, though it may not be readily available. This systematic review aimed to critically evaluate the evidence of adverse events associated with clenbuterol among athletes. The search strategy was in accordance with PRISMA guidelines. Databases such as PubMed, Science Direct, Scopus, and Google Scholar were searched from 1990 to October 2021 to find out the relevant case reports and case series. There were 23 included studies. Using a suitable scale, the included studies' methodological quality analysis was evaluated. In total, 24 athletes experienced adverse events. Oral ingestion of clenbuterol was the most preferred route among them. The daily administered dose of clenbuterol was ranging from 20 µg to 30 mg. Major adverse events experienced by athletes were supraventricular tachycardia, atrial fibrillation, hypotension, chest pain, myocardial injury, myocarditis, myocardial ischemia, myocardial infarction, cardiomyopathy, hepatomegaly, hyperglycemia, and death. The cardiac-related complications were the most commonly occurring adverse events. Clenbuterol is notorious to produce life-threatening adverse events including death. Lack of evidence regarding the performance-enhancing effects of clenbuterol combined with its serious toxicities questions the usefulness of this drug in athletes.
Assuntos
Cardiomiopatias , Clembuterol , Infarto do Miocárdio , Isquemia Miocárdica , Humanos , Clembuterol/efeitos adversos , Agonistas Adrenérgicos betaRESUMO
The analytical quality by design (AQbD) approach is utilized for developing and validating the simple, sensitive, cost-effective reverse-phase high performance liquid chromatographic method for the estimation of xanthohumol (XH) in bulk and nanoformulations. The Box-Behnken design (BBD) is applied for method optimization. The mobile phase ratio, pH and flow rate were selected as independent variables, whereas retention time, peak area, peak height, tailing factor, and theoretical plates were selected as dependent variables. The chromatogram of XH obtained under optimized conditions has given optimum conditions such as retention time (5.392 min), peak area (1,226,737 mAU), peak height (90,121 AU), tailing factor (0.991) and theoretical plates (4446.667), which are contoured in the predicted values shown by BBD. Validation of the method has been performed according to ICH Q2(R1) recommendations, using optimized conditions for linearity, limit of detection (LOD) and limit of quantification (LOQ), accuracy, precision, robustness and system suitability. All the values of validation parameters lie within the acceptable limits prescribed by ICH. Therefore, the developed and validated method of XH by the AQbD approach can be applied for the estimation of XH in bulk and various nanoformulations.
Assuntos
Cromatografia de Fase Reversa , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Limite de DetecçãoRESUMO
Neurological disorders are the foremost occurring diseases across the globe resulting in progressive dysfunction, loss of neuronal structure ultimately cell death. Therefore, attention has been drawn toward the natural resources for the search of neuroprotective agents. Plant-based food bioactives have emerged as potential neuroprotective agents for the treatment of neurodegenerative disorders. This comprehensive review primarily focuses on various plant food bioactive, mechanisms, therapeutic targets, in vitro and in vivo studies in the treatment of neurological disorders to explore whether they are boon or bane for neurological disorders. In addition, the clinical perspective of plant food bioactives in neurological disorders are also highlighted. Scientific evidences point toward the enormous therapeutic efficacy of plant food bioactives in the prevention or treatment of neurological disorders. Nevertheless, identification of food bioactive components accountable for the neuroprotective effects, mechanism, clinical trials, and consolidation of information flow are warranted. Plant food bioactives primarily act by mediating through various pathways including oxidative stress, neuroinflammation, apoptosis, excitotoxicity, specific proteins, mitochondrial dysfunction, and reversing neurodegeneration and can be used for the prevention and therapy of neurodegenerative disorders. In conclusion, the plant based food bioactives are boon for neurological disorders.
RESUMO
PURPOSE: Primary pediatric tumors are the most common solid tumors in children. There are limited reports on the management and outcome of these tumors in the developing countries. In recent years, advances have been done in the diagnosis, treatment, and outcome of these tumors. The aim of this study was to evaluate the histopathology, characteristics, and outcome of primary pediatric tumors in Iran. METHODS: This retrospective study examines primary brain tumors in children below 14 years of age who have undergone surgery. Histopathological characteristics according to WHO 2017 classification, age, sex, tumor resection rate, and patient outcome were extracted and studied. The results of the study were compared with the results of similar reports from neighboring countries and other parts of the world. RESULTS: In this study, 199 primary pediatric tumors were examined. Out of 199 cases, 114 cases were males, and 85 cases were females, and the male/female ratio was 1.34. The most common tumor group in this study was astrocytic tumors (68.3%) and the most common tumor was pilocytic astrocytoma (22.1%). In terms of malignancy, 50.7% of tumors were benign, and 49.3% were malignant. Total resection was done in 46% and subtotal resection in 35%. The mortality rate was found 19.2%. ÙAmong the remaining cases during follow-up, 76.6% had a good outcome without neurological deficits or mild disability and 23.4% had moderate to severe disability. CONCLUSIONS: The results of the study in terms of pathology and demographic characteristics were mainly similar to other reports. The mean age of patients was lower, and the patients' outcome was better than the other countries in the region.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Astrocitoma/diagnóstico , Astrocitoma/epidemiologia , Astrocitoma/cirurgia , Neoplasias Encefálicas/patologia , Criança , Feminino , Humanos , Irã (Geográfico)/epidemiologia , Masculino , Estudos RetrospectivosRESUMO
Xanthohumol (XH) a prenylated chalcone has diverse therapeutic effects against various diseases. In the present study, a bioanalytical method was developed for XH in rat plasma using reverse phase high performance liquid chromatography. The validation of the method was performed as per ICH M10 guidelines using curcumin as an internal standard. The Isocratic elution method was used with a run time of 10 min, wherein the mobile phase ratio 0.1% v/v OPA (A): Methanol (B) was 15:85 v/v at flow rate 0.8 mL/min and injection volume of 20 µL. The chromatograms of XH and curcumin was recorded at a wavelength of 370 nm. The retention time for XH and curcumin was 7.4 and 5.8 min, respectively. The spiked XH from plasma was extracted by the protein precipitation method. The developed method was linear with R2 value of 0.9996 over a concentration range of 50-250 ng/mL along with LLOQ. The results of all the validation parameters are found to be within the accepted limits with %RSD value less than 2 and the percentage recovery was found to be greater than 95%. Based on the %RSD and percentage recovery results it was confirmed that the method was precise and accurate among the study replicates. LOD and LOQ values in plasma samples were found to be 8.49 ng/mL and 25.73 ng/mL, respectively. The stability studies like freeze thaw, short term and long-term stability studies were also performed, %RSD and percentage recovery of the XH from plasma samples were within the acceptable limits. Therefore, the developed bioanalytical method can be used effectively for estimation of XH in plasma samples.
Assuntos
Chalconas , Curcumina , Ratos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Metanol , Reprodutibilidade dos TestesRESUMO
Xanthohumol (XH) is an important prenylated flavonoid that is found within the inflorescence of Humulus lupulus L. (Hop plant). XH is an important ingredient in beer and is considered a significant bioactive agent due to its diverse medicinal applications, which include anti-inflammatory, antimicrobial, antioxidant, immunomodulatory, antiviral, antifungal, antigenotoxic, antiangiogenic, and antimalarial effects as well as strong anticancer activity towards various types of cancer cells. XH acts as a wide ranging chemopreventive and anticancer agent, and its isomer, 8-prenylnaringenin, is a phytoestrogen with strong estrogenic activity. The present review focuses on the bioactivity of XH on various types of cancers and its pharmacokinetics. In this paper, we first highlight, in brief, the history and use of hops and then the chemistry and structure-activity relationship of XH. Lastly, we focus on its prominent effects and mechanisms of action on various cancers and its possible use in cancer prevention and treatment. Considering the limited number of available reviews on this subject, our goal is to provide a complete and detailed understanding of the anticancer effects of XH against different cancers.
Assuntos
Antineoplásicos Fitogênicos/farmacocinética , Flavonoides/química , Flavonoides/farmacocinética , Humulus , Neoplasias/tratamento farmacológico , Propiofenonas/química , Propiofenonas/farmacocinética , Animais , Antineoplásicos Fitogênicos/química , Feminino , Humanos , Humulus/química , Humulus/crescimento & desenvolvimento , Masculino , Neoplasias/patologiaRESUMO
Curcumin, a natural polyphenolic compound present in Curcuma longa L. rhizomes, shows potent antioxidant, anti-inflammatory, anti-cancer, and anti-atherosclerotic properties. Atherosclerosis is a comprehensive term for a series of degenerative and hyperplasic lesions such as thickening or sclerosis in large- and medium-sized arteries, causing decreased vascular-wall elasticity and lumen diameter. Atherosclerotic cerebro-cardiovascular disease has become a major concern for human health in recent years due to its clinical sequalae of strokes and heart attacks. Curcumin concoction treatment modulates several important signaling pathways related to cellular migration, proliferation, cholesterol homeostasis, inflammation, and gene transcription, among other relevant actions. Here, we provide an overview of curcumin in atherosclerosis prevention and disclose the underlying mechanisms of action of its anti-atherosclerotic effects.
Assuntos
Aterosclerose/tratamento farmacológico , Curcumina/uso terapêutico , Animais , Aterosclerose/metabolismo , Curcumina/farmacologia , Humanos , Transdução de Sinais/efeitos dos fármacosRESUMO
Neurodegenerative disorders like Alzheimer's disease, Huntington's disease, Parkinson's disease, spinocerebellar ataxias, amyotrophic lateral sclerosis, frontotemporal dementia to prion diseases, Friedreich's ataxia, hereditary spastic paraplegia and optic atrophy type 1, and behavior disorders like neuropsychiatric, hyperactivity and autism spectrum disorders are closely associated with neurobiological deficits. Brain derived neurotrophic factor (BDNF) is an extensively studied neurotrophin. BDNF is essential for neuronal genesis, differentiation, survival, growth, plasticity, synaptic viability and transmission. BDNF has emerged as a promising target for regulating synaptic activity and plasticity. An overview of effects and mechanisms of the natural products targeting BDNF is described. This review is an attempt to enumerate the effects of various natural products on BDNF as a novel therapeutic approach for neurodegenerative and neuropsychiatric disorders.
Assuntos
Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtornos Mentais/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Humanos , Transtornos Mentais/metabolismo , Doenças Neurodegenerativas/metabolismoRESUMO
Activator protein 1 (AP-1) is a key transcription factor in the control of several cellular processes responsible for cell survival proliferation and differentiation. Dysfunctional AP-1 expression and activity are involved in several severe diseases, especially inflammatory disorders and cancer. Therefore, targeting AP-1 has recently emerged as an attractive therapeutic strategy for cancer prevention and therapy. This review summarizes our current understanding of AP-1 biology and function as well as explores and discusses several natural bioactive compounds modulating AP-1-associated signaling pathways for cancer prevention and intervention. Current limitations, challenges, and future directions of research are also critically discussed.
Assuntos
Neoplasias/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Apoptose/efeitos dos fármacos , Produtos Biológicos/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Compostos Fitoquímicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/metabolismoRESUMO
Significance: Peroxisome proliferator-activated receptors (PPARs) have a moderately preserved amino-terminal domain, an extremely preserved DNA-binding domain, an integral hinge region, and a distinct ligand-binding domain that are frequently encountered with the other nuclear receptors. PPAR-ß/δ is among the three nuclear receptor superfamily members in the PPAR group. Recent Advances: Emerging studies provide an insight on natural compounds that have gained increasing attention as potential anticancer agents due to their ability to target multiple pathways involved in cancer development and progression. Critical Issues: Modulation of PPAR-ß/δ activity has been suggested as a potential therapeutic strategy for cancer management. This review focuses on the ability of bioactive phytocompounds to impact reactive oxygen species (ROS) and redox signaling by targeting PPAR-ß/δ for cancer therapy. The rise of ROS in cancer cells may play an important part in the initiation and progression of cancer. However, excessive levels of ROS stress can also be toxic to the cells and cancer cells with increased oxidative stress are likely to be more vulnerable to damage by further ROS insults induced by exogenous agents, such as phytocompounds and therapeutic agents. Therefore, redox modulation is a way to selectively kill cancer cells without causing significant toxicity to normal cells. However, use of antioxidants together with cancer drugs may risk the effect of treatment as both act through opposite mechanisms. Future Directions: It is advisable to employ more thorough and detailed methodologies to undertake mechanistic explorations of numerous phytocompounds. Moreover, conducting additional clinical studies is recommended to establish optimal dosages, efficacy, and the impact of different phytochemicals on PPAR-ß/δ.
Assuntos
Neoplasias , Oxirredução , PPAR beta , Compostos Fitoquímicos , Espécies Reativas de Oxigênio , Transdução de Sinais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Oxirredução/efeitos dos fármacos , PPAR beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/química , PPAR delta/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacosRESUMO
[This retracts the article DOI: 10.1007/s13205-021-02811-x.].
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Citrus fruits are a very rich source of electrolytes and citric acid. They have been used traditionally for treating urinary ailments and renal stones. Citrus jambhiri is indigenously used as a diuretic. AIM OF THE STUDY: Present study aimed at establishing the antiurolithiatic potential of the juice of Citrus jambhiri fruits along with the elucidation of the mechanism involved in the urolithiasis disease defying activity. METHODS: The antiurolithiatic activity was established by means of nucleation, growth and aggregation assay in the in vitro settings and by means of ethylene glycol mediated calcium oxalate urolithiasis in the male Wistar rats. Docking studies were performed in an attempt to determine the mechanism of the antiurolithiatic action. RESULTS: Present study revealed the role of C. jambhiri fruit juice in reducing nucleation, growth and aggregation of calcium oxalate crystals by possible reduction in the urinary supersaturation relative to calcium oxalate and raising the zeta potential of the calcium oxalate crystals. C. jambhiri fruit juice treatment in experimental rats produced significant amelioration of hypercalciuria, hyperoxaluria, hyperphosphaturia, hyperproteinuria, hyperuricosuria, hypocitraturia and hypomagnesiuria and ion activity product of calcium oxalate. It exhibited nephroprotection against calcium oxalate crystals induced renal tubular dilation and renal tissue deterioration. Docking studies further revealed high binding potential of the phytoconstituents of C. jambhiri viz. narirutin, neohesperidin, hesperidin, rutin and citric acid with glycolate oxidase and matrix metalloproteinase-9. CONCLUSION: C. jambhiri fruit juice possesses excellent antiurolithiatic activity. The study reveals antiurolithiatic mechanism that involves restoration of equilibrium between the promoters and inhibitors of stone formation; and inhibition of matrix metalloproteinases and glycolate oxidase.
Assuntos
Citrus , Cálculos Renais , Urolitíase , Masculino , Ratos , Animais , Cristalização , Oxalato de Cálcio/química , Sucos de Frutas e Vegetais , Ratos Wistar , Urolitíase/tratamento farmacológico , Ácido Cítrico/uso terapêutico , Metaloproteinases da MatrizRESUMO
Lung cancer is a heterogeneous group of malignancies with high incidence worldwide. It is the most frequently occurring cancer in men and the second most common in women. Due to its frequent diagnosis and variable response to treatment, lung cancer was reported as the top cause of cancer-related deaths worldwide in 2020. Many aberrant signaling cascades are implicated in the pathogenesis of lung cancer, including those involved in apoptosis (B cell lymphoma protein, Bcl-2-associated X protein, first apoptosis signal ligand), growth inhibition (tumor suppressor protein or gene and serine/threonine kinase 11), and growth promotion (epidermal growth factor receptor/proto-oncogenes/phosphatidylinositol-3 kinase). Accordingly, these pathways and their signaling molecules have become promising targets for chemopreventive and chemotherapeutic agents. Recent research provides compelling evidence for the use of plant-based compounds, known collectively as phytochemicals, as anticancer agents. This review discusses major contributing signaling pathways involved in the pathophysiology of lung cancer, as well as currently available treatments and prospective drug candidates. The anticancer potential of naturally occurring bioactive compounds in the context of lung cancer is also discussed, with critical analysis of their mechanistic actions presented by preclinical and clinical studies.
RESUMO
Objectives: Xanthohumol (XH) is a prenylated chalcone available naturally and has diverse pharmacological activities. It has some limitations in the physiological environment such as biotransformation and less gastrointestinal tract absorption. To overcome the limitations, we prepared nanoformulations [solid lipid nanoparticles (SLNs)] of XH. Therefore, an analytical method is required for the estimation of XH in the bulk nanoformulations, so we developed and validated a quality by design (QbD)-based ultraviolet (UV)-spectrophotometric method as per the International Conference of Harmonization (ICH) Q2 (R1) guidelines. Materials and Methods: The new analytical Qbd based UV-visible spectrophotometric technique is developed and validated for estimation of XH in bulk and SLNs as per ICH guidelines Q2 (R1). Critical method variables are selected on the basis of risk assessment studies. Optimization of method variables was performed using the a central composite design (CCD) model. Results: Multiregression ANOVA analysis showed an R2 value of 0.8698, which is nearer to 1, indicating that the model was best fitted. The optimized method by CCD was validated for its linearity, precision, accuracy, repeatability, limit of detection (LOD), limit of quantification (LOQ), and specificity. All validated parameters were found to be within the acceptable limits [% relative standard deviation (RSD) <2]. The method was linear between 2-12 g/mL concentration with R2 value 0.9981. Method was accurate with percent recovery 99.3-100.1%. LOD and LOQ were found to be 0.77 and 2.36 µg/mL, respectively. The precision investigation confirmed that the method was precise with %RSD <2. Conclusion: The developed and validated method was applied to estimate XH in bulk and SLNs. The developed method was specific to XH, which was confined by the specificity study.