RESUMO
The Asian seabass (Lates calcarifer) faces significant disease threats, which are exacerbated by intensive farming practices and environmental changes. Therefore, understanding its immune system is crucial. The current study presents a comprehensive analysis of immune-related genes in Asian seabass peripheral blood leukocytes (PBLs) using Iso-seq technology, identifying 16 key pathways associated with 7857 immune-related genes, comprising 634 unique immune-related genes. The research marks the first comprehensive report on the entire immunoglobulin repertoire in Asian seabass, revealing specific characteristics of immunoglobulin heavy chain constant region transcripts, including IgM (Cµ, ighm), IgT (Cτ, ight), and IgD (Cδ, ighd). The study confirms the presence of membrane-bound form, ighmmb, ightmb, ighdmb of IgM, IgT and IgD and secreted form, ighmsc and ightsc of IgM and IgT, respectively, with similar structural patterns and conserved features in amino acids across immunoglobulin molecules, including cysteine residues crucial for structural integrity observed in other teleost species. In response to bacterial infections by Flavobacterium covae (formerly F. columnare genomovar II) and Streptococcus iniae, both secreted and membrane-bound forms of IgM (ighmmb and ighmsc) and IgT (ightmb and ightsc) show significant expression, indicating their roles in systemic and mucosal immunity. The expression of membrane-bound form IgD gene, ighdmb, predominantly exhibits targeted upregulation in PBLs, suggesting a regulatory role in B cell-mediated immunity. The findings underscore the dynamic and tissue-specific expression of immunoglobulin repertoires, ighmmb, ighmsc, ightmb, ightsc and ighdmb in Asian seabass, indicating a sophisticated immune response to bacterial pathogens. These findings have practical implications for fish aquaculture, and disease control strategies, serving as a valuable resource for advancing research in Asian seabass immunology.
Assuntos
Doenças dos Peixes , Proteínas de Peixes , Infecções por Flavobacteriaceae , Flavobacterium , Imunoglobulina D , Imunoglobulina M , Imunoglobulinas , Infecções Estreptocócicas , Streptococcus iniae , Animais , Bass/imunologia , Bass/genética , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Infecções por Flavobacteriaceae/imunologia , Infecções por Flavobacteriaceae/veterinária , Infecções por Flavobacteriaceae/genética , Flavobacterium/fisiologia , Imunidade Inata/genética , Imunoglobulina D/genética , Imunoglobulina D/imunologia , Imunoglobulina D/química , Imunoglobulina M/imunologia , Imunoglobulina M/genética , Imunoglobulinas/genética , Imunoglobulinas/imunologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus iniae/fisiologiaRESUMO
The occurrence of francisellosis caused by Francisella orientalis sp. nov. (Fo) and columnaris disease caused by Flavobacterium oreochromis (For) is negatively impacting Nile tilapia (Oreochromis niloticus) production, especially when high stocking densities are used. A new and innovative bivalent mucoadhesive nanovaccine was developed in this study for immersion vaccination of tilapia against francisellosis and columnaris disease. It was shown to have the potential to improve both innate and adaptive immunity in vaccinated Nile tilapia. It increased innate immune parameters, such as lysozyme activity, bactericidal activity, phagocytosis, phagocytic index, and total serum IgM antibody levels. Additionally, the vaccine was effective in elevating specific adaptive immune responses, including IgM antibody levels against Fo and For vaccine antigens and upregulating immune-related genes IgM, IgT, CD4+, MHCIIα, and TCRß in the head kidney, spleen, peripheral blood leukocytes, and gills of vaccinated fish. Furthermore, fish vaccinated with the mucoadhesive nanovaccine showed higher survival rates and relative percent survival after being challenged with either single or combined infections of Fo and For. This vaccine is anticipated to be beneficial for large-scale immersion vaccination of tilapia and may be a strategy for shortening vaccination times and increasing immune protection against francisellosis and columnaris diseases in tilapia aquaculture.
Assuntos
Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Tilápia , Animais , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Vacinas BacterianasRESUMO
Fluorescent sensor-based carbon dots (CDs) have significantly developed for sensing metal ions because of their great physical and optical properties, including tunable fluorescence emission, high fluorescence quantum yield, high sensitivity, non-toxicity, and biocompatibility. In this research, a green synthetic approach via simple gamma irradiation for the carbon dot synthesis from water hyacinth was developed since water hyacinth has been classified as an invasive aquatic plant containing cellulose, hemicellulose, and lignin. The thiol moiety (SH) was further functionalized on the surface functional groups of CDs as the "turn-off" fluorescent sensor for metal ion detection. Fluorescence emission displayed a red shift from 451 to 548 nm when excited between 240 and 500 nm. The quantum yield of CDs-SH was elucidated to be 13%, with strong blue fluorescence emission under ultraviolet irridiation (365 nm), high photostability and no photobleaching. The limit of detection was determined at micromolar levels for Hg2+, Cu2+, and Fe3+. CDs-SH could be a real-time monitoring sensor for Hg2+ and Cu2+ as fluorescence quenching was observed within 2 min. Furthermore, paper test-strip based CDs-SH could be applied to detect these metal ions.
RESUMO
Francisella noatunensis subsp. orientalis (Fno) is one of the infectious diseases that causes economic losses associated with tilapia mortality. Even though direct immersion administration of vaccines is more practicable for small fish and fry compared with oral and injection vaccination in the fields, the efficacy is still insufficient due to lower potency of antigen uptake. Herein, we accomplished the development of a mucoadhesive nanovaccine platform using cetyltrimethylammonium bromide (CTAB), a cationic surfactant, to improve the efficiency of immersion vaccination against Fno in tilapia. Cationic Fno nanovaccine (CAT-Fno-NV) was prepared though emulsification using an ultrasonic method. In our investigation, the CAT-Fno-NV increased the opportunity of Fno vaccine uptake by extending the contact time between vaccine and mucosal surface of fish gills and enhancing the protective efficacy against Fno infection. Fish were vaccinated with the CAT-Fno-NV by a direct immersion protocol. The challenge trial by Fno injection revealed that CAT-Fno-NV at the concentration 1:100 ratio (approximately 1 × 106 cfu/mL) had the highest efficacy to protect fish from Fno infection at day 30 after post challenge period according to the total number of Fno detected in head kidney, spleen and liver. A significant upregulation of IgM gene was observed in gills, skin, head kidney, serum and peripheral blood lymphocytes (PBLs) and spleen tissues treated with WC and CAT-Fno-NV (1:100) vaccines, while IgT gene was highly expressed in only gills and skin tissues for treated WC and CAT-Fno-NV (1:100) groups. We anticipate that the cationic surfactant-based nanovaccine developed in this study could become an efficient alternative for direct immersion vaccination to induce humoral immune responses against Fno in vaccinated tilapia.
Assuntos
Ciclídeos , Doenças dos Peixes , Francisella , Infecções por Bactérias Gram-Negativas , Tilápia , Animais , Doenças dos Peixes/prevenção & controle , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Imersão , Tensoativos , Vacinação/métodos , Vacinação/veterináriaRESUMO
Circulating cell-free DNA (cfDNA) has attracted attention as a non-invasive biomarker for diagnosing and monitoring various cancers. Given that human papillomavirus (HPV) DNA integration and overexpression of E6/E7 oncogenes are pivotal events for carcinogenesis, we sought to determine if HPV E7 cfDNA could serve as a specific biomarker for cervical cancer detection. We applied droplet digital PCR (ddPCR) to quantify HPV16/18 E7 cfDNA from the serum of patients with cervical cancer, cervical intraepithelial neoplasia, and controls. HPV16/18 E7 cfDNA was highly specific for cervical cancer, displaying 30.77% sensitivity, 100% specificity, and an area under the curve of 0.65. Furthermore, we developed a sensitive isothermal detection of HPV16/18 E7 and the PIK3CA WT reference gene based on recombinase polymerase amplification combined with a lateral flow strip (RPA-LF). The assay took less than 30 min and the detection limit was 5-10 copies. RPA-LF exhibited 100% sensitivity and 88.24% specificity towards HPV16/18 E7 cfDNA in clinical samples. The agreement between RPA-LF and ddPCR was 83.33% (κ = 0.67) for HPV16 E7 and 100% (κ = 1.0) for HPV18 E7, indicating a good correlation between both tests. Therefore, we conclude that HPV E7 cfDNA represents a potential tumor marker with excellent specificity and moderate sensitivity for minimally invasive cervical cancer monitoring. Moreover, the RPA-LF assay provides an affordable, rapid, and ultrasensitive tool for detecting HPV cfDNA in resource-limited settings.