Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Nature ; 628(8007): 433-441, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509368

RESUMO

An important advance in cancer therapy has been the development of poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of homologous recombination (HR)-deficient cancers1-6. PARP inhibitors trap PARPs on DNA. The trapped PARPs are thought to block replisome progression, leading to formation of DNA double-strand breaks that require HR for repair7. Here we show that PARP1 functions together with TIMELESS and TIPIN to protect the replisome in early S phase from transcription-replication conflicts. Furthermore, the synthetic lethality of PARP inhibitors with HR deficiency is due to an inability to repair DNA damage caused by transcription-replication conflicts, rather than by trapped PARPs. Along these lines, inhibiting transcription elongation in early S phase rendered HR-deficient cells resistant to PARP inhibitors and depleting PARP1 by small-interfering RNA was synthetic lethal with HR deficiency. Thus, inhibiting PARP1 enzymatic activity may suffice for treatment efficacy in HR-deficient settings.


Assuntos
Replicação do DNA , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases , Transcrição Gênica , Humanos , Quebras de DNA de Cadeia Dupla , Replicação do DNA/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Reparo de DNA por Recombinação , Fase S , Transcrição Gênica/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Poli(ADP-Ribose) Polimerase-1/metabolismo
2.
Mol Cell ; 82(18): 3366-3381.e9, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36002000

RESUMO

Oncogene activation during tumorigenesis promotes DNA replication stress (RS), which subsequently drives the formation of cancer-associated chromosomal rearrangements. Many episodes of physiological RS likely arise due to conflicts between the DNA replication and transcription machineries operating simultaneously at the same loci. One role of the RAD51 recombinase in human cells is to protect replication forks undergoing RS. Here, we have identified a key role for RAD51 in preventing transcription-replication conflicts (TRCs) from triggering replication fork breakage. The genomic regions most affected by RAD51 deficiency are characterized by being replicated and transcribed in early S-phase and show significant overlap with loci prone to cancer-associated amplification. Consistent with a role for RAD51 in protecting against transcription-replication conflicts, many of the adverse effects of RAD51 depletion are ameliorated by inhibiting early S-phase transcription. We propose a model whereby RAD51 suppresses fork breakage and subsequent inadvertent amplification of genomic loci prone to experiencing TRCs.


Assuntos
Replicação do DNA , Rad51 Recombinase , Cromossomos/metabolismo , Humanos , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Fase S/genética , Transcrição Gênica
3.
Mol Cell ; 82(18): 3382-3397.e7, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36002001

RESUMO

Aberrant replication causes cells lacking BRCA2 to enter mitosis with under-replicated DNA, which activates a repair mechanism known as mitotic DNA synthesis (MiDAS). Here, we identify genome-wide the sites where MiDAS reactions occur when BRCA2 is abrogated. High-resolution profiling revealed that these sites are different from MiDAS at aphidicolin-induced common fragile sites in that they map to genomic regions replicating in the early S-phase, which are close to early-firing replication origins, are highly transcribed, and display R-loop-forming potential. Both transcription inhibition in early S-phase and RNaseH1 overexpression reduced MiDAS in BRCA2-deficient cells, indicating that transcription-replication conflicts (TRCs) and R-loops are the source of MiDAS. Importantly, the MiDAS sites identified in BRCA2-deficient cells also represent hotspots for genomic rearrangements in BRCA2-mutated breast tumors. Thus, our work provides a mechanism for how tumor-predisposing BRCA2 inactivation links transcription-induced DNA damage with mitotic DNA repair to fuel the genomic instability characteristic of cancer cells.


Assuntos
Replicação do DNA , Mitose , Afidicolina/farmacologia , Proteína BRCA2/genética , Sítios Frágeis do Cromossomo/genética , DNA/genética , Dano ao DNA , Instabilidade Genômica , Humanos , Mitose/genética
4.
J Pathol ; 259(1): 10-20, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36210634

RESUMO

Chromatin licensing and DNA replication factor 1 (CDT1), a protein of the pre-replicative complex, is essential for loading the minichromosome maintenance complex (MCM) helicases onto the origins of DNA replication. While several studies have shown that dysregulation of CDT1 expression causes re-replication and DNA damage in cell lines, and CDT1 is highly expressed in several human cancers, whether CDT1 deregulation is sufficient to enhance tumorigenesis in vivo is currently unclear. To delineate its role in vivo, we overexpressed Cdt1 in the mouse colon and induced carcinogenesis using azoxymethane/dextran sodium sulfate (AOM/DSS). Here, we show that mice overexpressing Cdt1 develop a significantly higher number of tumors with increased tumor size, and more severe dysplastic changes (high-grade dysplasia), compared with control mice under the same treatment. These tumors exhibited an increased growth rate, while cells overexpressing Cdt1 loaded greater amounts of Mcm2 onto chromatin, demonstrating origin overlicensing. Adenomas overexpressing Cdt1 showed activation of the DNA damage response (DDR), apoptosis, formation of micronuclei, and chromosome segregation errors, indicating that aberrant expression of Cdt1 results in increased genomic and chromosomal instability in vivo, favoring cancer development. In line with these results, high-level expression of CDT1 in human colorectal cancer tissue specimens and colorectal cancer cell lines correlated significantly with increased origin licensing, activation of the DDR, and microsatellite instability (MSI). © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Colorretais , Replicação do DNA , Proteínas de Ligação a DNA , Animais , Humanos , Camundongos , Carcinogênese/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/genética , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo
5.
Nature ; 555(7694): 112-116, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29466339

RESUMO

Oncogene-induced DNA replication stress contributes critically to the genomic instability that is present in cancer. However, elucidating how oncogenes deregulate DNA replication has been impeded by difficulty in mapping replication initiation sites on the human genome. Here, using a sensitive assay to monitor nascent DNA synthesis in early S phase, we identified thousands of replication initiation sites in cells before and after induction of the oncogenes CCNE1 and MYC. Remarkably, both oncogenes induced firing of a novel set of DNA replication origins that mapped within highly transcribed genes. These ectopic origins were normally suppressed by transcription during G1, but precocious entry into S phase, before all genic regions had been transcribed, allowed firing of origins within genes in cells with activated oncogenes. Forks from oncogene-induced origins were prone to collapse, as a result of conflicts between replication and transcription, and were associated with DNA double-stranded break formation and chromosomal rearrangement breakpoints both in our experimental system and in a large cohort of human cancers. Thus, firing of intragenic origins caused by premature S phase entry represents a mechanism of oncogene-induced DNA replication stress that is relevant for genomic instability in human cancer.


Assuntos
Replicação do DNA , Fase G1/genética , Instabilidade Genômica/genética , Neoplasias/genética , Oncogenes/genética , Origem de Replicação/genética , Fase S/genética , Linhagem Celular Tumoral , Pontos de Quebra do Cromossomo , Estudos de Coortes , Ciclina E/genética , Ciclina E/metabolismo , DNA/biossíntese , DNA/genética , Quebras de DNA de Cadeia Dupla , Replicação do DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Genes myc/genética , Humanos , Proteínas Oncogênicas/genética , Transcrição Gênica/genética , Translocação Genética/genética
6.
Mol Cell ; 63(5): 877-83, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27524497

RESUMO

The Pold3 gene encodes a subunit of the Polδ DNA polymerase complex. Pold3 orthologs are not essential in Saccharomyces cerevisiae or chicken DT40 cells, but the Schizosaccharomyces pombe ortholog is essential. POLD3 also has a specialized role in the repair of broken replication forks, suggesting that POLD3 activity could be particularly relevant for cancer cells enduring high levels of DNA replication stress. We report here that POLD3 is essential for mouse development and is also required for viability in adult animals. Strikingly, even Pold3(+/-) mice were born at sub-Mendelian ratios, and, of those born, some presented hydrocephaly and had a reduced lifespan. In cells, POLD3 deficiency led to replication stress and cell death, which were aggravated by the expression of activated oncogenes. Finally, we show that Pold3 deletion destabilizes all members of the Polδ complex, explaining its major role in DNA replication and the severe impact of its deficiency.


Assuntos
DNA Polimerase III/deficiência , Replicação do DNA , Haploinsuficiência , Hidrocefalia/genética , Longevidade/genética , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Morte Celular , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA , DNA Polimerase III/genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/genética , Histonas/metabolismo , Homozigoto , Hidrocefalia/metabolismo , Hidrocefalia/mortalidade , Hidrocefalia/patologia , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Fosforilação , Análise de Sobrevida
7.
Mol Cell ; 64(6): 1127-1134, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984746

RESUMO

Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Ciclina E/genética , Quebras de DNA de Cadeia Dupla , DNA/genética , Osteossarcoma/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Reparo de DNA por Recombinação , Proteína da Polipose Adenomatosa do Colo/deficiência , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina E/metabolismo , DNA/metabolismo , Fase G1 , Expressão Gênica , Instabilidade Genômica , Humanos , Camundongos , Camundongos Knockout , Nocodazol/farmacologia , Osteossarcoma/metabolismo , Osteossarcoma/mortalidade , Osteossarcoma/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/antagonistas & inibidores , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Fase S , Estresse Fisiológico , Análise de Sobrevida
8.
Nat Rev Mol Cell Biol ; 11(3): 220-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20177397

RESUMO

Genomic instability is a characteristic of most cancers. In hereditary cancers, genomic instability results from mutations in DNA repair genes and drives cancer development, as predicted by the mutator hypothesis. In sporadic (non-hereditary) cancers the molecular basis of genomic instability remains unclear, but recent high-throughput sequencing studies suggest that mutations in DNA repair genes are infrequent before therapy, arguing against the mutator hypothesis for these cancers. Instead, the mutation patterns of the tumour suppressor TP53 (which encodes p53), ataxia telangiectasia mutated (ATM) and cyclin-dependent kinase inhibitor 2A (CDKN2A; which encodes p16INK4A and p14ARF) support the oncogene-induced DNA replication stress model, which attributes genomic instability and TP53 and ATM mutations to oncogene-induced DNA damage.


Assuntos
Instabilidade Genômica , Mutação , Neoplasias/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Dano ao DNA , Proteínas de Ligação a DNA/genética , Humanos , Modelos Biológicos , Proteínas Serina-Treonina Quinases/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética
10.
EMBO Rep ; 17(12): 1731-1737, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27760777

RESUMO

Human malignancies overcome replicative senescence either by activating the reverse-transcriptase telomerase or by utilizing a homologous recombination-based mechanism, referred to as alternative lengthening of telomeres (ALT). In budding yeast, ALT exhibits features of break-induced replication (BIR), a repair pathway for one-ended DNA double-strand breaks (DSBs) that requires the non-essential subunit Pol32 of DNA polymerase delta and leads to conservative DNA replication. Here, we examined whether ALT in human cancers also exhibits features of BIR A telomeric fluorescence in situ hybridization protocol involving three consecutive staining steps revealed the presence of conservatively replicated telomeric DNA in telomerase-negative cancer cells. Furthermore, depletion of PolD3 or PolD4, two subunits of human DNA polymerase delta that are essential for BIR, reduced the frequency of conservatively replicated telomeric DNA ends and led to shorter telomeres and chromosome end-to-end fusions. Taken together, these results suggest that BIR is associated with conservative DNA replication in human cells and mediates ALT in cancer.


Assuntos
Reparo do DNA , Replicação do DNA , Neoplasias/genética , Homeostase do Telômero , Quebras de DNA de Cadeia Dupla , DNA Polimerase III/deficiência , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Reparo do DNA/genética , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Recombinação Homóloga/genética , Humanos , Hibridização in Situ Fluorescente , Proteínas de Saccharomyces cerevisiae/genética , Telomerase/genética , Telomerase/metabolismo , Homeostase do Telômero/genética , Encurtamento do Telômero/genética , Leveduras/genética , Leveduras/fisiologia
11.
EMBO Rep ; 17(5): 769-79, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26993089

RESUMO

Pioneering studies within the last few years have allowed the in vitro expansion of tissue-specific adult stem cells from a variety of endoderm-derived organs, including the stomach, small intestine, and colon. Expansion of these cells requires activation of the receptor Lgr5 by its ligand R-spondin 1 and is likely facilitated by the fact that in healthy adults the stem cells in these organs are highly proliferative. In many other adult organs, such as the liver, proliferating cells are normally not abundant in adulthood. However, upon injury, the liver has a strong regenerative potential that is accompanied by the emergence of Lgr5-positive stem cells; these cells can be isolated and expanded in vitro as organoids. In an effort to isolate stem cells from non-regenerating mouse livers, we discovered that healthy gallbladders are a rich source of stem/progenitor cells that can be propagated in culture as organoids for more than a year. Growth of these organoids was stimulated by R-spondin 1 and noggin, whereas in the absence of these growth factors, the organoids differentiated partially toward the hepatocyte fate. When transplanted under the liver capsule, gallbladder-derived organoids maintained their architecture for 2 weeks. Furthermore, single cells prepared from dissociated organoids and injected into the mesenteric vein populated the liver parenchyma of carbon tetrachloride-treated mice. Human gallbladders were also a source of organoid-forming stem cells. Thus, under specific growth conditions, stem cells can be isolated from healthy gallbladders, expanded almost indefinitely in vitro, and induced to differentiate toward the hepatocyte lineage.


Assuntos
Proteínas de Transporte/metabolismo , Vesícula Biliar/citologia , Células-Tronco/metabolismo , Trombospondinas/metabolismo , Animais , Biomarcadores , Proteínas de Transporte/genética , Proteínas de Transporte/farmacologia , Diferenciação Celular/genética , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Fígado/citologia , Camundongos , Camundongos Transgênicos , Organoides , Inibidores de Proteínas Quinases/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Células-Tronco/efeitos dos fármacos , Trombospondinas/genética , Trombospondinas/farmacologia , Transcriptoma
12.
Retina ; 38(6): 1084-1090, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28622270

RESUMO

PURPOSE: To investigate the efficacy of the intravitreal dexamethasone implant as the treatment for recalcitrant macular edema after successful rhegmatogenous retinal detachment repair. METHODS: A retrospective review of the medical records was performed on 17 consecutive patients (17 eyes) with recalcitrant macular edema associated with rhegmatogenous retinal detachment repair who were treated with a single or multiple injections of an intravitreal dexamethasone 0.7-mg implant (Ozurdex; Allergan Inc) at two centers. Main outcomes of the study were change in logarithm of the minimum angle of resolution visual acuity, measurement of central foveal thickness, and macular cube volume as measured by spectral domain optical coherence tomography and frequency of complications. RESULTS: The mean age was 67 years (range, 51-78 years). All 17 patients received previous topical therapy and 12 of them had previous administration of intravitreal triamcinolone with persistence of macular edema. Baseline mean best-corrected visual acuity was 20/100 (logarithm of the minimum angle of resolution 0.75; range, 0.18-1.3 ±0.37) in the affected eyes. There was a statistically significant improvement in best-corrected visual acuity at 1 month (P < 0.001) and 3 months (P = 0.01). Mean baseline central foveal thickness was 505 µm, and mean macular cube volume was 10.62 mm. There was a statistically significant decrease in central foveal thickness and macular cube volume at 1 month (505-290 µm, P = 0.013 and 10.62-9.13 mm, P < 0.0001) and 3 months (P = 0.01). All patients developed recurrence of macular edema at 3 months, which required retreatment. The average number of implants was 4 (range, 1-14). No adverse effects such as retinal detachment or endophthalmitis occurred. Two patients experienced an increase in intraocular pressure that was controlled with topical therapy. CONCLUSION: Macular edema that occurs in eyes after successful repair of rhegmatogenous retinal detachment can be chronic and recalcitrant, and may be successfully and safely treated with the dexamethasone intravitreal implant.


Assuntos
Dexametasona/administração & dosagem , Glucocorticoides/administração & dosagem , Edema Macular/tratamento farmacológico , Descolamento Retiniano/complicações , Idoso , Implantes de Medicamento , Feminino , Humanos , Injeções Intravítreas , Edema Macular/etiologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Acuidade Visual
14.
Ophthalmology ; 123(8): 1802-1808, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27221737

RESUMO

PURPOSE: To determine the feasibility and safety of bilateral simultaneous vitreoretinal surgery in pediatric patients. DESIGN: International, multicenter, interventional, retrospective case series. PARTICIPANTS: Patients 17 years of age or younger from 24 centers worldwide who underwent immediate sequential bilateral vitreoretinal surgery (ISBVS)-defined as vitrectomy, scleral buckle, or lensectomy using the vitreous cutter-performed in both eyes sequentially during the same anesthesia session. METHODS: Clinical history, surgical details and indications, time under anesthesia, and intraoperative and postoperative ophthalmic and systemic adverse events were reviewed. MAIN OUTCOME MEASURES: Ocular and systemic adverse events. RESULTS: A total of 344 surgeries from 172 ISBVS procedures in 167 patients were included in the study. The mean age of the cohort was 1.3±2.6 years. Nonexclusive indications for ISBVS were rapidly progressive disease (74.6%), systemic morbidity placing the child at high anesthesia risk (76.0%), and residence remote from surgery location (30.2%). The most common diagnoses were retinopathy of prematurity (ROP; 72.7% [P < 0.01]; stage 3, 4.8%; stage 4A, 44.4%; stage 4B, 22.4%; stage 5, 26.4%), familial exudative vitreoretinopathy (7.0%), abusive head trauma (4.1%), persistent fetal vasculature (3.5%), congenital cataract (1.7%), posterior capsular opacification (1.7%), rhegmatogenous retinal detachment (1.7%), congenital X-linked retinoschisis (1.2%), Norrie disease (2.3%), and viral retinitis (1.2%). Mean surgical time was 143±59 minutes for both eyes. Higher ROP stage correlated with longer surgical time (P = 0.02). There were no reported intraoperative ocular complications. During the immediate postoperative period, 2 eyes from different patients demonstrated unilateral vitreous hemorrhage (0.6%). No cases of endophthalmitis, choroidal hemorrhage, or hypotony occurred. Mean total anesthesia time was 203±87 minutes. There were no cases of anesthesia-related death, malignant hyperthermia, anaphylaxis, or cardiac event. There was 1 case of reintubation (0.6%) and 1 case of prolonged oxygen desaturation (0.6%). Mean follow-up after surgery was 103 weeks, and anatomic success and globe salvage rates were 89.8% and 98.0%, respectively. CONCLUSIONS: This study found ISBVS to be a feasible and safe treatment paradigm for pediatric patients with bilateral vitreoretinal pathologic features when repeated general anesthesia is undesirable or impractical.


Assuntos
Extração de Catarata , Recurvamento da Esclera/métodos , Vitrectomia/métodos , Cirurgia Vitreorretiniana , Adolescente , Anestesia/métodos , Catarata/complicações , Criança , Pré-Escolar , Estudos de Viabilidade , Feminino , Humanos , Lactente , Internacionalidade , Masculino , Duração da Cirurgia , Vítreo Primário Hiperplásico Persistente/complicações , Vítreo Primário Hiperplásico Persistente/cirurgia , Doenças Retinianas/complicações , Doenças Retinianas/congênito , Doenças Retinianas/cirurgia , Retinopatia da Prematuridade/complicações , Retinopatia da Prematuridade/cirurgia , Retinosquise/complicações , Retinosquise/cirurgia , Estudos Retrospectivos , Vitreorretinopatia Proliferativa/complicações , Vitreorretinopatia Proliferativa/cirurgia
15.
EMBO J ; 30(11): 2167-76, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21522129

RESUMO

The p53 tumour suppressor gene, the most frequently mutated gene in human cancer, encodes a transcription factor that contains sequence-specific DNA binding and homo-tetramerization domains. Interestingly, the affinities of p53 for specific and non-specific DNA sites differ by only one order of magnitude, making it hard to understand how this protein recognizes its specific DNA targets in vivo. We describe here the structure of a p53 polypeptide containing both the DNA binding and oligomerization domains in complex with DNA. The structure reveals that sequence-specific DNA binding proceeds via an induced fit mechanism that involves a conformational switch in loop L1 of the p53 DNA binding domain. Analysis of loop L1 mutants demonstrated that the conformational switch allows DNA binding off-rates to be regulated independently of affinities. These results may explain the universal prevalence of conformational switching in sequence-specific DNA binding proteins and suggest that proteins like p53 rely more on differences in binding off-rates, than on differences in affinities, to recognize their specific DNA sites.


Assuntos
DNA/metabolismo , Conformação Proteica , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Análise Mutacional de DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Polarização de Fluorescência , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica
16.
Ophthalmology ; 122(2): 248-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25282251

RESUMO

PURPOSE: To report the visual outcomes of prosthetic replacement of the ocular surface ecosystem (PROSE) treatment in patients with ocular surface disease related to Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN). DESIGN: Retrospective cohort study. SUBJECTS: We included 86 patients (167 eyes) with history of SJS/TEN who underwent PROSE treatment from January 1, 2006, to January 1, 2011. METHODS: Etiology, previous interventions, change in visual acuity, change in visual function, and duration of follow-up are reported. Paired t test and Friedman test with Dunn's post hoc test for multiple comparisons were used for statistical analysis. MAIN OUTCOME MEASURES: Visual acuity at last follow-up and visual function based on the National Eye Institute 25-item Visual Functioning Questionnaire (NEI VFQ-25) at 6 months. RESULTS: We treated 35 males and 51 females with a history of SJS/TENS; median age was 36 years. The most common reported etiologies for SJS/TENS were antibiotics (n = 25), ibuprofen (n = 15), and lamotrigine (n = 11). The median visual acuity at the initial visit was 20/60 (range, 20/400-20/25; 0.48 logarithm of the minimum angle of resolution [logMAR]), and the visual acuity at completion of customization was 20/25 (range, 20/200-20/20; 0.096 logMAR; P < 0.001), with no decline in median acuity at the end of follow-up. Median duration of follow-up was 16 months. There was a significant improvement in the visual function of the patients based on the NEI VFQ-25 questionnaire (mean of 48 points at baseline vs. mean of 72 points at 6 months; P < 0.001). In addition, there was also an improvement in the self-reported general health of the patients (mean of 57 points at baseline vs. mean of 65 points at 6 months; P < 0.01). CONCLUSIONS: In a large cohort of patients with chronic ocular surface disease related to SJS/TEN, PROSE treatment offers sustained and significant large improvement in visual function and acuity.


Assuntos
Lentes de Contato , Doenças da Córnea/terapia , Ecossistema , Próteses e Implantes , Síndrome de Stevens-Johnson/terapia , Acuidade Visual/fisiologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Estudos de Coortes , Doenças da Córnea/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Perfil de Impacto da Doença , Síndrome de Stevens-Johnson/fisiopatologia , Inquéritos e Questionários
17.
PLoS Genet ; 8(2): e1002484, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22346760

RESUMO

Shifts between epigenetic states of transcriptional activity are typically correlated with changes in epigenetic marks. However, exceptions to this rule suggest the existence of additional, as yet uncharacterized, layers of epigenetic regulation. MOM1, a protein of 2,001 amino acids that acts as a transcriptional silencer, represents such an exception. Here we define the 82 amino acid domain called CMM2 (Conserved MOM1 Motif 2) as a minimal MOM1 fragment capable of transcriptional regulation. As determined by X-ray crystallography, this motif folds into an unusual hendecad-based coiled-coil. Structure-based mutagenesis followed by transgenic complementation tests in plants demonstrate that CMM2 and its dimerization are effective for transcriptional suppression at chromosomal loci co-regulated by MOM1 and the siRNA pathway but not at loci controlled by MOM1 in an siRNA-independent fashion. These results reveal a surprising separation of epigenetic activities that enable the single, large MOM1 protein to coordinate cooperating mechanisms of epigenetic regulation.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arabidopsis/química , Arabidopsis/genética , Epigênese Genética/genética , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica , ATPases Associadas a Diversas Atividades Celulares , Sequência de Aminoácidos , Cristalografia por Raios X , Inativação Gênica , Dados de Sequência Molecular , Mutagênese , Plantas Geneticamente Modificadas , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Estrutura Terciária de Proteína/genética , RNA Interferente Pequeno/genética , Relação Estrutura-Atividade
18.
Orbit ; 34(1): 6-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25208306

RESUMO

A 63-year-old female with mild, bilateral, stable thyroid-associated orbitopathy sustained trauma resulting in glass foreign bodies embedded on the left ocular surface and left lateral orbital extraconal and intraconal space. After 2 orbitotomies including a failed attempt to remove the intraconal foreign body and poor response to oral steroids, she developed severe, progressive left periorbital edema and 9 mm of relative proptosis. Serial, post-operative imaging demonstrated worsening inflammatory changes along the surgical tract, which slowly improved over several months, with simultaneously worsening proptosis and enlargement of the left inferior and medial rectus muscles consistent with worsening thyroid orbitopathy. She subsequently underwent unilateral 3-wall orbital decompression with improvement in her symptoms. Periorbital trauma with orbital foreign bodies and related surgical trauma may result in reactivation of thyroid-associated orbitopathy.


Assuntos
Corpos Estranhos/cirurgia , Oftalmopatia de Graves/complicações , Procedimentos Cirúrgicos Oftalmológicos/métodos , Órbita/lesões , Órbita/cirurgia , Descompressão Cirúrgica , Feminino , Vidro , Humanos , Pessoa de Meia-Idade
19.
EMBO J ; 29(21): 3723-32, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-20871591

RESUMO

TopBP1 is a checkpoint protein that colocalizes with ATR at sites of DNA replication stress. In this study, we show that TopBP1 also colocalizes with 53BP1 at sites of DNA double-strand breaks (DSBs), but only in the G1-phase of the cell cycle. Recruitment of TopBP1 to sites of DNA replication stress was dependent on BRCT domains 1-2 and 7-8, whereas recruitment to sites of DNA DSBs was dependent on BRCT domains 1-2 and 4-5. The BRCT domains 4-5 interacted with 53BP1 and recruitment of TopBP1 to sites of DNA DSBs in G1 was dependent on 53BP1. As TopBP1 contains a domain important for ATR activation, we examined whether it contributes to the G1 cell cycle checkpoint. By monitoring the entry of irradiated G1 cells into S-phase, we observed a checkpoint defect after siRNA-mediated depletion of TopBP1, 53BP1 or ATM. Thus, TopBP1 may mediate the checkpoint function of 53BP1 in G1.


Assuntos
Neoplasias Ósseas/genética , Proteínas de Transporte/fisiologia , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/fisiologia , Fase G1/genética , Genes cdc/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Nucleares/fisiologia , Western Blotting , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Reparo do DNA , Replicação do DNA , Humanos , Imunoprecipitação , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Células Tumorais Cultivadas , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
20.
Sci Rep ; 14(1): 7708, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565932

RESUMO

Human RECQL4, a member of the RecQ helicase family, plays a role in maintaining genomic stability, but its precise function remains unclear. The N-terminus of RECQL4 has similarity to Sld2, a protein required for the firing of DNA replication origins in budding yeast. Consistent with this sequence similarity, the Xenopus laevis homolog of RECQL4 has been implicated in initiating DNA replication in egg extracts. To determine whether human RECQL4 is required for firing of DNA replication origins, we generated cells in which both RECQL4 alleles were targeted, resulting in either lack of protein expression (knock-out; KO) or expression of a full-length, mutant protein lacking helicase activity (helicase-dead; HD). Interestingly, both the RECQL4 KO and HD cells were viable and exhibited essentially identical origin firing profiles as the parental cells. Analysis of the rate of fork progression revealed increased rates in the RECQL4 KO cells, which might be indicative of decreased origin firing efficiency. Our results are consistent with human RECQL4 having a less critical role in firing of DNA replication origins, than its budding yeast homolog Sld2.


Assuntos
RecQ Helicases , Origem de Replicação , Animais , Humanos , RecQ Helicases/genética , RecQ Helicases/metabolismo , Replicação do DNA , Xenopus laevis/metabolismo , DNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA