Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Diabetologia ; 65(7): 1108-1118, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35488926

RESUMO

AIM: Screening for coeliac disease in asymptomatic children with new-onset type 1 diabetes is controversial. The aim of this study was to analyse whether the confirmation of coeliac disease in children with new-onset type 1 diabetes and positive screening results can be postponed. METHODS: This was a multicentre population-based cohort study based on the German/Austrian/Swiss/Luxembourgian Prospective Diabetes Follow-up Registry (Diabetes Patienten Verlaufsdokumentation [DPV]). Participants aged ≤18 years diagnosed with type 1 diabetes between 1995 and June 2021 and with elevated IgA tissue transglutaminase antibodies (anti-tTGA) at diabetes onset on screening for coeliac disease were included. We compared outcomes of participants with a diabetes duration of more than 1 year between those in whom coeliac disease was confirmed histologically within the first 6 months and those in whom coeliac disease was confirmed between 6 and 36 months after diabetes diagnosis. RESULTS: Of 92,278 children and adolescents with a diagnosis of type 1 diabetes, 26,952 (29.2%) had documented anti-tTGA data at diabetes onset. Of these, 2340 (8.7%) had an elevated anti-tTGA level. Individuals who screened positive were younger (median age 9.0 vs 9.8 years, p<0.001) and more often female (53.1% vs 44.4%, p<0.001). A total of 533 participants (22.8% of those who screened positive) had a documented biopsy, of whom 444 had documented histological confirmation of coeliac disease. Of 411 participants with biopsy-proven coeliac disease within the first 36 months of diabetes and follow-up data, histological confirmation was performed in 264 (64.2%) within the first 6 months and in 147 (35.8%) between 6 and 36 months after diabetes onset. At follow-up (median diabetes duration 5.3 years and 5.1 years, respectively), estimated median HbA1c levels (62.8 mmol/mol vs 62.2 mmol/mol [7.9% vs 7.8%]), cardiovascular risk markers (lipids, rate of microalbuminuria, blood pressure), rates of acute diabetes complications (diabetic ketoacidosis, severe hypoglycaemia) and the proportions of participants reaching anti-tTGA levels within the normal range did not differ between groups. Participants with delayed histological confirmation of coeliac disease showed no negative effects on growth or weight gain during the observation period. CONCLUSIONS: Our study suggests that the histological confirmation of coeliac disease in asymptomatic individuals with new-onset type 1 diabetes could be postponed.


Assuntos
Doença Celíaca , Diabetes Mellitus Tipo 1 , Cetoacidose Diabética , Adolescente , Doença Celíaca/complicações , Doença Celíaca/diagnóstico , Criança , Estudos de Coortes , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/diagnóstico , Cetoacidose Diabética/complicações , Feminino , Humanos , Estudos Prospectivos
2.
Orphanet J Rare Dis ; 17(1): 83, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197096

RESUMO

BACKGROUND: GNAS is a complex gene that encodes Gsα, a signaling protein that triggers a complex network of pathways. Heterozygous inactivating mutations in Gsα-coding GNAS exons cause hormonal resistance; on the contrary, activating mutations in Gsα result in constitutive cAMP stimulation. Recent research has described a clinical condition characterized by both gain and loss of Gsα function, due to a heterozygous de novo variant of the maternal GNAS allele. PATIENTS AND METHODS: We describe a girl with a complex combination of clinical signs and a new heterozygous GNAS variant. For the molecular analysis of GNAS gene, DNA samples of the proband and her parents were extracted from their peripheral blood samples. In silico analysis was performed to predict the possible in vivo effect of the detected novel genetic variant. The activity of Gsα protein was in vitro analyzed from samples of erythrocyte membranes, recovered from heparinized blood samples. RESULTS: We found a new heterozygous missense c.166A > T-(p.Ile56Phe) GNAS variant in exon 2, inherited from the mother that determined a reduced activity of 50% of Gsα protein function. The analysis of her parents showed a 20-25% reduction in Gsα protein activity in the mother and a normal function in the father. Clinically our patient presented a multisystemic disorder characterized by hyponatremia compatible with a nephrogenic syndrome of inappropriate antidiuresis, subclinical hyperthyroidism, subclinical hypercortisolism, precocious thelarche and pubarche and congenital bone abnormalities. CONCLUSIONS: This is the first time that the new variant c.166A > T (p.Ile56Phe) on exon 2 of GNAS gene, originated on maternal allele, has been described as probable cause of a multisystemic disorder. Although the mutation is associated with a reduced activity of the function of Gsα protein, this unusual phenotype on the contrary suggests a mild functional gain.


Assuntos
Cromograninas , Pseudo-Hipoparatireoidismo , Cromograninas/genética , Éxons , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Heterozigoto , Humanos , Mutação , Pseudo-Hipoparatireoidismo/genética
3.
Hum Mutat ; 32(6): 653-60, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21488135

RESUMO

Pseudohypoparathyroidism type Ia (PHPIa) is caused by GNAS mutations leading to deficiency of the α-subunit of stimulatory G proteins (Gsα) that mediate signal transduction of G protein-coupled receptors via cAMP. PHP type Ic (PHPIc) and PHPIa share clinical features of Albright hereditary osteodystrophy (AHO); however, in vitro activity of solubilized Gsα protein is normal in PHPIc but reduced in PHPIa. We screened 32 patients classified as PHPIc for GNAS mutations and identified three mutations (p.E392K, p.E392X, p.L388R) in four unrelated families. These and one novel mutation associated with PHPIa (p.L388P) were introduced into a pcDNA3.1(-) expression vector encoding Gsα wild-type and expressed in a Gsα-null cell line (Gnas(E2-/E2-) ). To investigate receptor-mediated cAMP accumulation, we stimulated the endogenous expressed ß(2) -adrenergic receptor, or the coexpressed PTH or TSH receptors, and measured the synthesized cAMP by RIA. The results were compared to receptor-independent cholera toxin-induced cAMP accumulation. Each of the mutants associated with PHPIc significantly reduced or completely disrupted receptor-mediated activation, but displayed normal receptor-independent activation. In contrast, PHPIa associated p.L388P disrupted both receptor-mediated activation and receptor-independent activation. We present a new subgroup of PHP that is caused by Gsα deficiency and selectively affects receptor coupling functions of Gsα.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Pseudo-Hipoparatireoidismo/genética , Adolescente , Sequência de Aminoácidos , Linhagem Celular , Criança , Pré-Escolar , Cromograninas , AMP Cíclico/metabolismo , Feminino , Displasia Fibrosa Poliostótica/genética , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Mutação , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/genética
4.
J Pediatr Endocrinol Metab ; 24(5-6): 297-301, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21823526

RESUMO

BACKGROUND: Pseudohypoparathyroidism (PHP) is characterized by hypocalcemia and hyperphosphatemia in association with an increased secretion of parathyroid hormone (PTH) due to decreased target tissue responsiveness to PTH. Patients with PHP type Ia are not only resistant to PTH, but also to other hormones that bind to receptors coupled to stimulatory G protein (Gsalpha). PHP Ia and Albright hereditary osteodystrophy (AHO) are caused by a reduced activity of the Gsalpha protein. Heterozygous inactivating Gs alpha (GNAS) gene mutations have been identified in these patients. METHODS: We studied a boy with PHP Ia. During follow-up the patient developed elevated liver enzyme serum levels and abdominal discomfort. Gsalpha activity was measured in erythrocyte membranes from the patient and the GNAS coding region of Gsalpha sequenced. RESULTS: Gsalpha activity was reduced (62%) and molecular analysis revealed a new heterozygous GNAS gene mutation (D196N). Gallstones were diagnosed and cholecystectomy was performed. Biochemical analysis revealed cholesterol stones, a condition that was not reported before in PHP Ia. CONCLUSIONS: Cholesterol gallstones may rarely be associated with PHP Ia and should be taken into account.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Cálculos Biliares/complicações , Cálculos Biliares/genética , Mutação de Sentido Incorreto , Pseudo-Hipoparatireoidismo/complicações , Pseudo-Hipoparatireoidismo/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Criança , Colesterol/análise , Cromograninas , Sequência Conservada , DNA/genética , Eritrócitos/metabolismo , Éxons , Deformidades Congênitas do Pé/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/sangue , Cálculos Biliares/química , Deformidades Congênitas da Mão/genética , Heterozigoto , Humanos , Masculino , Linhagem , Pseudo-Hipoparatireoidismo/classificação , Pseudo-Hipoparatireoidismo/patologia , Homologia de Sequência de Aminoácidos
5.
Beilstein J Org Chem ; 6: 57, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20625532

RESUMO

One important access to monodisperse (functionalized) oligoPPEs is based on the orthogonality of the alkyne protecting groups triisopropylsilyl and hydroxymethyl (HOM) and on the polar tagging with the hydroxymethyl moiety for an easy chromatographic separation of the products. This paper provides an update of this synthetic route. For the deprotection of HOM protected alkynes, γ-MnO2 proved to be better than (highly) activated MnO2. The use of HOM as an alkyne protecting group is accompanied by carbometalation as a side reaction in the alkynyl-aryl coupling. The extent of carbometalation can be distinctly reduced through substitution of HOM for 1-hydroxyethyl. The strategy of polar tagging is extended by embedding ether linkages within the solubilising side chains. With building blocks such as 1,4-diiodo-2,5-bis(6-methoxyhexyl) less steps are needed to assemble oligoPPEs with functional end groups and the isolation of pure compounds becomes simple. For the preparation of 1,4-dialkyl-2,5-diiodobenzene a better procedure is presented together with the finding that 1,4-dialkyl-2,3-diiodobenzene, a constitutional isomer of 1,4-dialkyl-2,5-diiodobenzene, is one of the byproducts.

6.
Eur J Endocrinol ; 183(5): 497-504, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33107440

RESUMO

BACKGROUND: Hypophosphataemic rickets (HR) comprise a clinically and genetically heterogeneous group of conditions, defined by renal-tubular phosphate wasting and consecutive loss of bone mineralisation. X-linked hypophosphataemia (XLH) is the most common form, caused by inactivating dominant mutations in PHEX, a gene encompassing 22 exons located at Xp22.1. XLH is treatable by anti-Fibroblast Growth Factor 23 antibody, while for other forms of HR such as therapy may not be indicated. Therefore, a genetic differentiation of HR is recommended. OBJECTIVE: To develop and validate a next-generation sequencing panel for HR with special focus on PHEX. DESIGN AND METHODS: We designed an AmpliSeq gene panel for the IonTorrent PGM next-generation platform for PHEX and ten other HR-related genes. For validation of PHEX sequencing 50 DNA-samples from XLH-patients, in whom 42 different mutations in PHEX and 1 structural variation have been proven before, were blinded, anonymised and investigated with the NGS panel. In addition, we analyzed one known homozygous DMP1 mutation and two samples of HR-patients, where no pathogenic PHEX mutation had been detected by conventional sequencing. RESULTS: The panel detected all 42 pathogenic missense/nonsense/splice-site/indel PHEX-mutations and in one the known homozygous DMP1 mutation. In the remaining two patients, we revealed a somatic mosaicism of a PHEX mutation in one; as well as two variations in DMP1 and a very rare compound heterozygous variation in ENPP1 in the second patient. CONCLUSIONS: This developed NGS panel is a reliable tool with high sensitivity and specificity for the diagnosis of XLH and related forms of HR.


Assuntos
Raquitismo Hipofosfatêmico Familiar/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nefropatias/diagnóstico , Endopeptidase Neutra Reguladora de Fosfato PHEX/análise , Distúrbios do Metabolismo do Fósforo/diagnóstico , Proteínas da Matriz Extracelular/análise , Raquitismo Hipofosfatêmico Familiar/genética , Feminino , Doenças Genéticas Ligadas ao Cromossomo X , Humanos , Nefropatias/genética , Masculino , Mutação , Fosfoproteínas/análise , Distúrbios do Metabolismo do Fósforo/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de DNA
7.
Horm Res Paediatr ; 93(3): 182-196, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32756064

RESUMO

Patients affected by pseudohypoparathyroidism (PHP) or related disorders are characterized by physical findings that may include brachydactyly, a short stature, a stocky build, early-onset obesity, ectopic ossifications, and neurodevelopmental deficits, as well as hormonal resistance most prominently to parathyroid hormone (PTH). In addition to these alterations, patients may develop other hormonal resistances, leading to overt or subclinical hypothyroidism, hypogonadism and growth hormone (GH) deficiency, impaired growth without measurable evidence for hormonal abnormalities, type 2 diabetes, and skeletal issues with potentially severe limitation of mobility. PHP and related disorders are primarily clinical diagnoses. Given the variability of the clinical, radiological, and biochemical presentation, establishment of the molecular diagnosis is of critical importance for patients. It facilitates management, including prevention of complications, screening and treatment of endocrine deficits, supportive measures, and appropriate genetic counselling. Based on the first international consensus statement for these disorders, this article provides an updated and ready-to-use tool to help physicians and patients outlining relevant interventions and their timing. A life-long coordinated and multidisciplinary approach is recommended, starting as far as possible in early infancy and continuing throughout adulthood with an appropriate and timely transition from pediatric to adult care.


Assuntos
Diabetes Mellitus Tipo 2 , Nanismo Hipofisário , Hipotireoidismo , Pseudo-Hipoparatireoidismo , Transição para Assistência do Adulto , Adulto , Criança , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/terapia , Nanismo Hipofisário/diagnóstico , Nanismo Hipofisário/terapia , Humanos , Hipotireoidismo/diagnóstico , Hipotireoidismo/terapia , Guias de Prática Clínica como Assunto , Pseudo-Hipoparatireoidismo/diagnóstico , Pseudo-Hipoparatireoidismo/terapia
8.
J Endocr Soc ; 3(7): 1383-1389, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31286103

RESUMO

Pseudohypoparathyroidism 1A (PHP1A) consists of signs of Albright hereditary osteodystrophy (AHO) and multiple, variable hormonal resistances. Elevated PTH levels are the biochemical hallmark of the disease. Short stature in PHP1A may be caused by a form of accelerated chondrocyte differentiation leading to premature growth plate closure, possibly in combination with GH deficiency in some patients. Treatment of short stature with recombinant growth hormone (rhGH) in pediatric patients may improve final height if started during childhood. The 10 11/12-year-old boy with clinical signs of AHO presented for evaluation of short stature [height standard deviation score (SDS) -2.72]. Clinically his mother was affected by AHO as well. A heterozygous mutation c.505G>A (p.E169K) in exon 6 of the GNAS gene confirmed a diagnosis of PHP1A in the boy. However, hormonal assessment was unremarkable except for low serum IGF-1 (SDS -2.67). On follow-up, GH deficiency due to GHRH resistance was suspected and confirmed by clonidine and arginine stimulation tests. Treatment with rhGH (0.035 mg/kg) for 2 years resulted in catch-up growth (height SDS -1.52). At age 15 years the PTH levels and bone age of the patient remain within the normal range. In patients with PHP1A, short stature is caused by the effects of Gs-α deficiency on the growth plate. However, resistance to GHRH and the resulting GH deficiency might also contribute. Recombinant GH treatment increases growth in these patients. Diagnostic workup for GH deficiency as a factor contributing to short stature is recommended even in the absence of other hormonal resistances.

9.
Horm Res Paediatr ; 92(3): 150-156, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31707392

RESUMO

INTRODUCTION: Almost 20 years after the first international guidelines on the diagnosis and treatment of GHD have been published, clinical practice varies significantly. The low accuracy of endocrine tests for GHD and the burden caused by ineffective treatment of individual patients were strong motives for national endocrine societies to set up national guidelines regarding how to diagnose GHD in childhood. This audit aims to review the current state and identify common changes, which may improve the diagnostic procedure. METHODS: A group of eight German pediatric endocrinologists contacted eight pediatric endocrinologists from Spain, France, Poland, the UK, the Netherlands, Denmark, Italy, and the US. Each colleague responded as a representative for the own country to a detailed questionnaire containing 22 open questions about national rules, guidelines, and practice with respect to GHD diagnostics and GH prescription. The results were presented and discussed in a workshop and then documented in this study which was reviewed by all participants. RESULTS: National guidelines are available in 7 of 9 countries. GH is prescribed by pediatric endocrinologists in most countries. Some countries have established boards that review and monitor prescriptions. Preferred GH stimulation tests and chosen cutoffs vary substantially. Overall, a trend to lowering the GH cutoff was identified. Priming is becoming more popular and now recommended in 5 out of 9 countries; however, with different protocols. The definition of pretest-conditions that qualify the patient to undergo GH testing varies substantially in content and strictness. The most frequently used clinical sign is low height velocity, but definition varies. Height, IGF-1, and bone age are additional parameters recommended in some countries. CONCLUSIONS: GHD diagnostics varies substantially in eight European countries and in the US. It seems appropriate to undertake further efforts to harmonize endocrine diagnostics in Europe and the US based on available scientific evidence.


Assuntos
Técnicas de Diagnóstico Endócrino/normas , Hormônio do Crescimento Humano/deficiência , Guias de Prática Clínica como Assunto/normas , Dinamarca , Europa (Continente) , Feminino , França , Alemanha , Hormônios Esteroides Gonadais/administração & dosagem , Hormônio do Crescimento Humano/sangue , Hormônio do Crescimento Humano/uso terapêutico , Humanos , Lactente , Cooperação Internacional , Itália , Masculino , Países Baixos , Polônia , Valores de Referência , Espanha , Inquéritos e Questionários , Reino Unido , Estados Unidos
10.
Clin Chem ; 54(9): 1537-45, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18617581

RESUMO

BACKGROUND: Pseudohypoparathyroidism type Ib (PHPIb) is characterized by parathyroid hormone (PTH) resistance, which can lead to hypocalcemia, hyperphosphatemia, and increased serum PTH. The disorder is caused by mutations in regulatory regions of the GNAS gene (GNAS complex locus) that lead to interferences in the methylation status of alternative GNAS promoters, such as exon A/B, NESP55, and XL alpha-s. PHPIb comprises disorders that show distinctive changes in methylation status but share the same clinical phenotype: (a) loss of methylation only at exon A/B of the GNAS gene and involving no other obvious epigenetic abnormalities [e.g., those caused by heterozygous microdeletions in the STX16 (syntaxin 16) region and found in many patients with autosomal dominant (AD) PHPIb]; (b) methylation abnormalities at several differentially methylated regions (DMRs), which are observed in most patients with sporadic PHPIb and some families with AD PHPIb. METHODS: To permit early and reliable diagnosis of suspected PHPIb, we designed methylation-sensitive restriction enzyme-based and bisulfite deamination-based PCR tests for exon A/B and NESP55 DMRs. RESULTS: Both PCR strategies permit proper methylation testing of GNAS and NESP55 DMRs and elucidate different disease subtypes. We have identified a novel microsatellite repeat polymorphism within GNAS exon A/B, and pedigree analyses have shown its presence to be conclusive evidence for familial disease. CONCLUSIONS: We provide a simple diagnostic test for PHPIb, an imprinting disorder caused by different molecular changes within the GNAS complex locus. PHPIb, a complex and diagnostically challenging clinical phenotype, can be treated successfully by taking steps before the manifestation of symptoms to avoid clinical complications in affected patients or asymptomatic members of affected families who show positive results in genetic tests.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/análise , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Pseudo-Hipoparatireoidismo/diagnóstico , Pseudo-Hipoparatireoidismo/genética , Criança , Cromograninas , Metilação de DNA , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Humanos , Masculino , Repetições de Microssatélites/genética , Fenótipo , Reação em Cadeia da Polimerase , Polimorfismo Genético/genética , Pseudo-Hipoparatireoidismo/classificação , Pseudo-Hipoparatireoidismo/metabolismo
11.
J Bone Miner Res ; 33(8): 1480-1488, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29693731

RESUMO

Pseudohypoparathyroidism type 1A (PHP1A), pseudoPHP (PPHP), and PHP type 1B (PHP1B) are caused by maternal and paternal GNAS mutations and abnormal methylation at maternal GNAS promoter(s), respectively. Adult PHP1A patients are reportedly obese and short, whereas most PPHP patients are born small. In addition to parathyroid hormone (PTH) resistance, PHP1A and PHP1B patients may display early-onset obesity. Because early-onset and severe obesity and short stature are daily burdens for PHP1A patients, we aimed at improving knowledge on the contribution of the GNAS transcripts to fetal and postnatal growth and fat storage. Through an international collaboration, we collected growth and weight data from birth until adulthood for 306 PHP1A/PPHP and 220 PHP1B patients. PHP1A/PPHP patients were smaller at birth than healthy controls, especially PPHP (length Z-score: PHP1A -1.1 ± 1.8; PPHP -3.0 ± 1.5). Short stature is observed in 64% and 59% of adult PHP1A and PPHP patients. PHP1B patients displayed early postnatal overgrowth (height Z-score at 1 year: 2.2 ± 1.3 and 1.3 ± 1.5 in autosomal dominant and sporadic PHP1B) followed by a gradual decrease in growth velocity resulting in normal adult height (Z-score for both: -0.4 ± 1.1). Early-onset obesity characterizes GNAS alterations and is associated with significant overweight and obesity in adults (bodey mass index [BMI] Z-score: 1.4 ± 2.6, 2.1 ± 2.0, and 1.4 ± 1.9 in PPHP, PHP1A, and PHP1B, respectively), indicating that reduced Gsα expression is a contributing factor. The growth impairment in PHP1A/PPHP may be due to Gsα haploinsufficiency in the growth plates; the paternal XLαs transcript likely contributes to prenatal growth; for all disease variants, a reduced pubertal growth spurt may be due to accelerated growth plate closure. Consequently, early diagnosis and close follow-up is needed in patients with GNAS defects to screen and intervene in case of early-onset obesity and decreased growth velocity. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Desenvolvimento Ósseo/genética , Cromograninas/genética , Epigênese Genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Loci Gênicos , Predisposição Genética para Doença , Obesidade/genética , Adulto , Idade de Início , Índice de Massa Corporal , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Pseudo-Hipoparatireoidismo/genética , Aumento de Peso/genética
12.
Nat Rev Endocrinol ; 14(8): 476-500, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29959430

RESUMO

This Consensus Statement covers recommendations for the diagnosis and management of patients with pseudohypoparathyroidism (PHP) and related disorders, which comprise metabolic disorders characterized by physical findings that variably include short bones, short stature, a stocky build, early-onset obesity and ectopic ossifications, as well as endocrine defects that often include resistance to parathyroid hormone (PTH) and TSH. The presentation and severity of PHP and its related disorders vary between affected individuals with considerable clinical and molecular overlap between the different types. A specific diagnosis is often delayed owing to lack of recognition of the syndrome and associated features. The participants in this Consensus Statement agreed that the diagnosis of PHP should be based on major criteria, including resistance to PTH, ectopic ossifications, brachydactyly and early-onset obesity. The clinical and laboratory diagnosis should be confirmed by a molecular genetic analysis. Patients should be screened at diagnosis and during follow-up for specific features, such as PTH resistance, TSH resistance, growth hormone deficiency, hypogonadism, skeletal deformities, oral health, weight gain, glucose intolerance or type 2 diabetes mellitus, and hypertension, as well as subcutaneous and/or deeper ectopic ossifications and neurocognitive impairment. Overall, a coordinated and multidisciplinary approach from infancy through adulthood, including a transition programme, should help us to improve the care of patients affected by these disorders.


Assuntos
Diagnóstico Tardio/efeitos adversos , Hormônio Paratireóideo/uso terapêutico , Guias de Prática Clínica como Assunto , Pseudo-Hipoparatireoidismo/diagnóstico , Pseudo-Hipoparatireoidismo/terapia , Consenso , Resistência a Medicamentos , Feminino , Predisposição Genética para Doença , Humanos , Recém-Nascido , Masculino , Triagem Neonatal/organização & administração , Prognóstico , Desenvolvimento de Programas , Pseudo-Hipoparatireoidismo/genética , Medição de Risco
13.
J Clin Endocrinol Metab ; 92(5): 1764-8, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17299070

RESUMO

OBJECTIVE: The GNAS gene encodes the alpha-subunit of stimulatory G proteins, which play a crucial role in intracellular signal transduction of peptide and neurotransmitter receptors. In addition to transcript variants that differ in their first exon due to different promoters, there are two long (Gsalpha-L) and two short (Gsalpha-S) splice variants, created by alternative splicing. Heterozygous inactivating maternally inherited mutations of GNAS lead to a phenotype in which Albright hereditary osteodystrophy is associated with pseudohypoparathyroidism type Ia. METHODS AND RESULTS: The GNAS gene of a 10-yr-old girl with brachymetacarpia, mental retardation, normocalcemic pseudohypoparathyroidism, and hypothyroidism was investigated. We found a heterozygous insertion of an adenosine in exon 3 altering codon 85 and leading to a frame shift inducing a stop codon in exon 4. Molecular studies of cDNA from blood RNA demonstrated normal, biallelic expression of Gsalpha-S transcripts, whereas expression of Gsalpha-L transcripts from the maternal allele was reduced. Immunoblot analysis revealed a reduced Gsalpha-L protein level to about 50%, whereas the protein level of Gsalpha-S was unaltered. Furthermore, the Gsalpha protein activity in erythrocyte membranes was diminished to about 75% of normal. Both the reduced activity and the mutation were also found in the mother and the affected younger brother. CONCLUSION: This report demonstrates the first evidence for a pathogenic mutation in exon 3 of the GNAS gene. The mutation is associated with a phenotype of Albright hereditary osteodystrophy and pseudohypoparathyroidism type Ia due to selective deficiency of Gsalpha-L and a partial reduction of Gsalpha activity.


Assuntos
Displasia Fibrosa Poliostótica/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Pseudo-Hipoparatireoidismo/genética , Alelos , Cálcio/sangue , Pré-Escolar , Cromograninas , Membrana Eritrocítica/química , Éxons/genética , Feminino , Humanos , Hipotireoidismo/genética , Immunoblotting , Deficiência Intelectual/genética , Hormônio Paratireóideo/sangue , Mutação Puntual/genética , Polimorfismo Conformacional de Fita Simples , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
J Clin Res Pediatr Endocrinol ; 9(1): 74-79, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27425121

RESUMO

Pseudohypoparathyroidism type Ia (PHP-Ia) is characterized by multihormone resistance and an Albright hereditary osteodystrophy (AHO) phenotype. It is caused by heterozygous mutations in GNAS gene. Clinical and biochemical findings of a female PHP-Ia patient were evaluated from age of diagnosis (6.5 years) to 14.5 years of age. The patient had short stature, brachydactyly, and subcutaneous heterotopic ossifications. Serum calcium and phosphorus levels were normal, but parathyroid hormone levels were high. Based on the typical clinical findings of AHO phenotype and biochemical findings, she was diagnosed as having PHP-Ia. A novel heterozygous mutation (c.128T>C) was found in the GNAS gene. Follow-up examinations revealed resistance to thyroid-stimulating hormone and a bioinactive growth hormone. Clinicians should take into consideration PHP-Ia in patients referred with short stature, and patients with an AHO phenotype must be further evaluated for hormone resistance, GNAS gene mutation, Gsα activity. To our knowledge, this is the first case report describing bioinactive growth hormone in PHP-Ia.


Assuntos
Cromograninas/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Predisposição Genética para Doença/genética , Mutação , Pseudo-Hipoparatireoidismo/genética , Adolescente , Criança , Análise Mutacional de DNA , Feminino , Seguimentos , Heterozigoto , Humanos , Pseudo-Hipoparatireoidismo/classificação , Pseudo-Hipoparatireoidismo/diagnóstico , Turquia
16.
J Bone Miner Res ; 32(4): 776-783, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28084650

RESUMO

Pseudohypoparathyroidism type Ib (PHP1B) is characterized primarily by resistance to parathyroid hormone (PTH) and thus hypocalcemia and hyperphosphatemia, in most cases without evidence for Albright hereditary osteodystrophy (AHO). PHP1B is associated with epigenetic changes at one or several differentially-methylated regions (DMRs) within GNAS, which encodes the α-subunit of the stimulatory G protein (Gsα) and splice variants thereof. Heterozygous, maternally inherited STX16 or GNAS deletions leading to isolated loss-of-methylation (LOM) at exon A/B alone or at all maternal DMRs are the cause of autosomal dominant PHP1B (AD-PHP1B). In this study, we analyzed three affected individuals, the female proband and her two sons. All three revealed isolated LOM at GNAS exon A/B, whereas the proband's healthy maternal grandmother and uncle showed normal methylation at this locus. Haplotype analysis was consistent with linkage to the STX16/GNAS region, yet no deletion could be identified. Whole-genome sequencing of one of the patients revealed a large heterozygous inversion (1,882,433 bp). The centromeric breakpoint of the inversion is located 7,225 bp downstream of GNAS exon XL, but its DMR showed no methylation abnormality, raising the possibility that the inversion disrupts a regulatory element required only for establishing or maintaining exon A/B methylation. Because our three patients presented phenotypes consistent with PHP1B, and not with PHP1A, the Gsα promoter is probably unaffected by the inversion. Our findings expand the spectrum of genetic mutations that lead to LOM at exon A/B alone and thus biallelic expression of the transcript derived from this alternative first GNAS exon. © 2017 American Society for Bone and Mineral Research.


Assuntos
Cromograninas/genética , Transtornos Cromossômicos/genética , Inversão Cromossômica , Éxons , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Genes Dominantes , Heterozigoto , Pseudo-Hipoparatireoidismo/genética , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Sintaxina 16/genética , Pseudo-Hipoparatireoidismo
17.
Eur J Endocrinol ; 175(6): P1-P17, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27401862

RESUMO

OBJECTIVE: Disorders caused by impairments in the parathyroid hormone (PTH) signalling pathway are historically classified under the term pseudohypoparathyroidism (PHP), which encompasses rare, related and highly heterogeneous diseases with demonstrated (epi)genetic causes. The actual classification is based on the presence or absence of specific clinical and biochemical signs together with an in vivo response to exogenous PTH and the results of an in vitro assay to measure Gsa protein activity. However, this classification disregards other related diseases such as acrodysostosis (ACRDYS) or progressive osseous heteroplasia (POH), as well as recent findings of clinical and genetic/epigenetic background of the different subtypes. Therefore, the EuroPHP network decided to develop a new classification that encompasses all disorders with impairments in PTH and/or PTHrP cAMP-mediated pathway. DESIGN AND METHODS: Extensive review of the literature was performed. Several meetings were organised to discuss about a new, more effective and accurate way to describe disorders caused by abnormalities of the PTH/PTHrP signalling pathway. RESULTS AND CONCLUSIONS: After determining the major and minor criteria to be considered for the diagnosis of these disorders, we proposed to group them under the term 'inactivating PTH/PTHrP signalling disorder' (iPPSD). This terminology: (i) defines the common mechanism responsible for all diseases; (ii) does not require a confirmed genetic defect; (iii) avoids ambiguous terms like 'pseudo' and (iv) eliminates the clinical or molecular overlap between diseases. We believe that the use of this nomenclature and classification will facilitate the development of rationale and comprehensive international guidelines for the diagnosis and treatment of iPPSDs.


Assuntos
Proteína Relacionada ao Hormônio Paratireóideo , Hormônio Paratireóideo , Pseudo-Hipoparatireoidismo/classificação , Pseudo-Hipoparatireoidismo/diagnóstico , Doenças Ósseas Metabólicas/sangue , Doenças Ósseas Metabólicas/classificação , Doenças Ósseas Metabólicas/diagnóstico , Disostoses/sangue , Disostoses/classificação , Disostoses/diagnóstico , Europa (Continente) , Humanos , Deficiência Intelectual/sangue , Deficiência Intelectual/classificação , Deficiência Intelectual/diagnóstico , Ossificação Heterotópica/sangue , Ossificação Heterotópica/classificação , Ossificação Heterotópica/diagnóstico , Osteocondrodisplasias/sangue , Osteocondrodisplasias/classificação , Osteocondrodisplasias/diagnóstico , Hormônio Paratireóideo/sangue , Proteína Relacionada ao Hormônio Paratireóideo/sangue , Pseudo-Hipoparatireoidismo/sangue , Dermatopatias Genéticas/sangue , Dermatopatias Genéticas/classificação , Dermatopatias Genéticas/diagnóstico
18.
Eur J Endocrinol ; 152(6): 875-80, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15941927

RESUMO

OBJECTIVE: 5alpha-reductase enzymes reduce testosterone (T) to the most potent androgen dihydrotestosterone (DHT). Two isoenzymes are known to day. While the type 2-enzyme (5RII) is predominantly expressed in male genital tissues and mutations are known to cause a severe virilization disorder in genetic males, the role of the type 1-enzyme (5RI) in normal male androgen physiology is unclear. We investigated whether 5RI is transcribed in normal male genital skin fibroblasts (GSFs) and if the transcription is regulated by age or by androgens themselves. METHODS: GSF from 14 normally virilized males of different ages, ranging from 8 months to 72 years, obtained at circumcision were cultured. Total RNA was isolated after incubation for 48 h with 100 nM T or without androgens. Each sample was amplified in triplicate by real-time PCR with porphobilinogen desaminase as a housekeeping gene used for semiquantification. Selected cultures were analyzed after incubation with 10 and 100 nM T and 1 and 100 nM DHT for 24, 48 and 120 h. RESULTS: 5RI was transcribed in all investigated samples with a 4.5-fold variability in the mRNA concentration of different individuals. However, neither age-related regulation nor significant influence of T or DHT on the transcription rate was discovered. CONCLUSION: Since 5RI is abundantly transcribed in GSFs, we hypothesize that this isoenzyme may play important roles in the androgen physiology of normally virilized males and may contribute to masculinization in 5RII-deficient males at the time of puberty.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/deficiência , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/fisiologia , Genitália Masculina/enzimologia , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/biossíntese , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Adulto , Fatores Etários , Idoso , Criança , Pré-Escolar , Fibroblastos , Humanos , Lactente , Isoenzimas , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , RNA/química , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Diferenciação Sexual/fisiologia , Testosterona/metabolismo , Transcrição Gênica
19.
Bone ; 71: 53-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25464124

RESUMO

CONTEXT: Loss-of-function GNAS mutations lead to hormone resistance and Albright's hereditary osteodystrophy (AHO) when maternally inherited, i.e. pseudohypoparathyroidism-Ia (PHPIa), but cause AHO alone when located on the paternal allele, i.e. pseudoPHP (PPHP). OBJECTIVE: We aimed to establish the molecular diagnosis in a patient with AHO and evidence of hormone resistance. CASE: The patient is a female who presented at the age of 13.5years with short stature and multiple AHO features. No evidence for TSH or gonadotropin-resistance was present. Serum calcium and vitamin D levels were normal. However, serum PTH was elevated on multiple occasions (64-178pg/mL, normal: 9-52) and growth hormone response to clonidine or L-DOPA was blunted, suggesting hormone resistance and PHP-Ia. The patient had diminished erythrocyte Gsα activity and a novel heterozygous GNAS mutation (c.328 G>C; p.A109P). The mother lacked the mutation, and the father's DNA was not available. Hence, a diagnosis of PPHP also appeared possible, supported by low birth weight and a lack of AHO features associated predominantly with PHP-Ia, i.e. obesity and cognitive impairment. To determine the parental origin of the mutation, we amplified the paternally expressed A/B and biallelically expressed Gsα transcripts from the patient's peripheral blood RNA. While both wild-type and mutant nucleotides were detected in the Gsα amplicon, only the mutant nucleotide was present in the A/B amplicon, indicating that the mutation was paternal. CONCLUSION: These findings suggest that PTH and other hormone resistance may not be an exclusive feature of PHP-Ia and could also be observed in patients with PPHP.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Mutação/genética , Pseudopseudo-Hipoparatireoidismo/genética , Adolescente , Alelos , Cálcio/sangue , Cromograninas , Análise Mutacional de DNA , Pai , Feminino , Humanos , Recém-Nascido , Masculino , Hormônio Paratireóideo/sangue , Pseudopseudo-Hipoparatireoidismo/sangue , Vitamina D/sangue
20.
Mol Genet Genomic Med ; 3(2): 111-20, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25802881

RESUMO

Maternally inherited inactivating GNAS mutations are the most common cause of parathyroid hormone (PTH) resistance and Albright hereditary osteodystrophy (AHO) leading to pseudohypoparathyroidism type Ia (PHPIa) due to Gsα deficiency. Paternally inherited inactivating mutations lead to isolated AHO signs characterizing pseudo-pseudohypoparathyroidism (PPHP). Mutations are distributed throughout the Gsα coding exons of GNAS and there is a lack of genotype-phenotype correlation. In this study, we sequenced exon 1-13 of GNAS in a large cohort of PHPIa- and PPHP patients and identified 58 different mutations in 88 patients and 27 relatives. Thirty-three mutations including 15 missense mutations were newly discovered. Furthermore, we found three hot spots: a known hotspot (p.D190MfsX14), a second at codon 166 (p.R166C), and a third at the exon 5 acceptor splice site (c.435 + 1G>A), found in 15, 5, and 4 unrelated patients, respectively. Comparing the clinical features to the molecular genetic data, a significantly higher occurrence of subcutaneous calcifications in patients harboring truncating versus missense mutations was demonstrated. Thus, in the largest cohort of PHPIa patients described to date, we extend the spectrum of known GNAS mutations and hot spots and demonstrate for the first time a correlation between the genetic defects and the expression of a clinical AHO-feature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA