Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Am J Physiol Renal Physiol ; 326(1): F120-F134, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855038

RESUMO

As life expectancy continues to rise, age-related diseases are becoming more prevalent. For example, proteinuric glomerular diseases typified by podocyte injury have worse outcomes in the elderly compared with young patients. However, the reasons are not well understood. We hypothesized that injury to nonaged podocytes induces senescence, which in turn augments their aging processes. In primary cultured human podocytes, injury induced by a cytopathic antipodocyte antibody, adriamycin, or puromycin aminonucleoside increased the senescence-related genes CDKN2A (p16INK4a/p14ARF), CDKN2D (p19INK4d), and CDKN1A (p21). Podocyte injury in human kidney organoids was accompanied by increased expression of CDKN2A, CDKN2D, and CDKN1A. In young mice, experimental focal segmental glomerulosclerosis (FSGS) induced by adriamycin and antipodocyte antibody increased the glomerular expression of p16, p21, and senescence-associated ß-galactosidase (SA-ß-gal). To assess the long-term effects of early podocyte injury-induced senescence, we temporally followed young mice with experimental FSGS through adulthood (12 m of age) and middle age (18 m of age). p16 and Sudan black staining were higher at middle age in mice with earlier FSGS compared with age-matched mice that did not get FSGS when young. This was accompanied by lower podocyte density, reduced canonical podocyte protein expression, and increased glomerular scarring. These results are consistent with injury-induced senescence in young podocytes, leading to increased senescence of podocytes by middle age accompanied by lower podocyte lifespan and health span.NEW & NOTEWORTHY Glomerular function is decreased by aging. However, little is known about the molecular mechanisms involved in age-related glomerular changes and which factors could contribute to a worse glomerular aging process. Here, we reported that podocyte injury in young mice and culture podocytes induced senescence, a marker of aging, and accelerates glomerular aging when compared with healthy aging mice.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefropatias , Podócitos , Pessoa de Meia-Idade , Humanos , Camundongos , Animais , Idoso , Podócitos/metabolismo , Glomerulosclerose Segmentar e Focal/metabolismo , Glomérulos Renais/metabolismo , Nefropatias/metabolismo , Envelhecimento , Doxorrubicina/toxicidade , Doxorrubicina/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-39018175

RESUMO

Acute kidney injury (AKI) is a public health concern associated with high rates of mortality, even in milder cases. One of the reasons for the difficulty in managing AKI in patients is due to its association with pre-existing comorbidities, such as diabetes. In fact, diabetes increases the susceptibility to develop more severe AKI after renal ischemia. However, the long-term effects of this association are not known. Thus, an experimental model to evaluate the chronic effects of renal ischemia/reperfusion (IR) in STZ-treated mice was analyzed. We focused on the glomerular and tubulointerstitial damage, as well as kidney function and metabolic profile. It was found that pre-existing diabetes may potentiate progressive kidney disease after AKI, mainly by exacerbating pro-inflammatory and sustaining fibrotic responses and altering renal glucose metabolism. For our knowledge, this is the first report that highlights the long-term effects of renal IR on diabetes. The findings of this study can support the management of AKI in clinical practice.

3.
J Physiol ; 598(22): 5271-5293, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32820824

RESUMO

KEY POINTS: Parkinson's disease (PD) is associated with respiratory dysfunction. In the 6-OHDA rat model of PD this is seen as a reduction in respiratory frequency and minute ventilation during normoxia and hypercapnia stimulus. Respiratory dysfunction is caused by neuronal death of medullary respiratory nuclei in the 6-OHDA model of PD. Oxidative stress can be considered a strong candidate for neurodegeneration via miR-34c downregulation and pro-apoptotic signalling in respiratory neurons, preceding the functional impairment observed in the 6-OHDA model of PD. ABSTRACT: Parkinson's disease (PD) is a neurodegenerative disease caused by dopaminergic neuron death in the substantia nigra (SN). New evidence has revealed that this neurodegeneration is the result of complex interactions between genetic abnormalities, environmental toxins, mitochondrial dysfunction and disruption of the blood-brain barrier (BBB) in the SN. In addition to classic symptoms, PD patients also exhibit respiratory failure. Here, we investigated whether oxidative stress was associated with neurodegeneration in a respiratory group (RG) of 6-OHDA-treated rats, which act as a model of PD. We analysed how oxidative stress affected apoptotic signalling in the RG 30 days after 6-OHDA treatment, shortly before commencement of breathing impairment (40 days). After 30 days, a dihydroethidium assay showed increased oxidative stress in the RG, anti-apoptotic signalling, as shown by an increase in p-Akt and BcL-2 and a decrease in Bax in the caudal aspect of the nucleus of the solitary tract (cNTS), and a decrease in p-p38 and Bax levels in the retrotrapezoid nucleus (RTN); pro-apoptotic signalling was indicated by a decrease in p-Akt and BcL-2 and an increase in Bax in the rostral ventral respiratory group (rVRG) and pre-Botzinger complex (preBotC). miR-34c, a known oxidative stress protector, was downregulated in 6-OHDA animals in the RC. After 40 days of 6-OHDA, the NTS, rVRG, preBotC and RTN exhibited reduced NeuN immunoreactivity, no BBB disruption and an increase in thiobarbituric acid reactivity. We conclude that in the 6-OHDA model of PD, oxidative stress contributes to neurodegeneration in medullary respiratory neurons.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Neurônios Dopaminérgicos , Humanos , Estresse Oxidativo , Oxidopamina/toxicidade , Ratos , Substância Negra
4.
Diabetologia ; 62(11): 2129-2142, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31399844

RESUMO

AIMS/HYPOTHESIS: Long non-coding RNAs (lncRNAs) are garnering increasing attention for their putative roles in the pathogenesis of chronic diseases, including diabetic kidney disease (DKD). However, much about in vivo lncRNA functionality in the adult organism remains unclear. To better understand lncRNA regulation and function in DKD, we explored the effects of the modular scaffold lncRNA HOTAIR (HOX antisense intergenic RNA), which approximates chromatin modifying complexes to their target sites on the genome. METHODS: Experiments were performed in human kidney tissue, in mice with streptozotocin-induced diabetes, the db/db mouse model of type 2 diabetes, podocyte-specific Hotair knockout mice and conditionally immortalised mouse podocytes. RESULTS: HOTAIR was observed to be expressed by several kidney cell-types, including glomerular podocytes, in both human and mouse kidneys. However, knockout of Hotair from podocytes had almost no effect on kidney structure, function or ultrastructure. Glomerular HOTAIR expression was found to be increased in human DKD, in the kidneys of mice with streptozotocin-induced diabetes and in the kidneys of db/db mice. Likewise, exposure of cultured mouse podocytes to high glucose caused upregulation of Hotair expression, which occurred in a p65-dependent manner. Although HOTAIR expression was upregulated in DKD and in high glucose-exposed podocytes, its knockout did not alter the development of kidney damage in diabetic mice. Rather, in a bioinformatic analysis of human kidney tissue, HOTAIR expression closely paralleled the expression of its genic neighbour, HOXC11, which is important to developmental patterning but which has an uncertain role in the adult kidney. CONCLUSIONS/INTERPRETATION: Many lncRNAs have been found to bind to the same chromatin modifying complexes. Thus, there is likely to exist sufficient redundancy in the system that the biological effects of dysregulated lncRNAs in kidney disease may often be inconsequential. The example of the archetypal scaffold lncRNA, HOTAIR, illustrates how lncRNA dysregulation may be a bystander in DKD without necessarily contributing to the pathogenesis of the condition. In the absence of in vivo validation, caution should be taken before ascribing major functional roles to single lncRNAs in the pathogenesis of chronic diseases.


Assuntos
Nefropatias Diabéticas/metabolismo , Regulação da Expressão Gênica , RNA Longo não Codificante/metabolismo , Animais , Padronização Corporal , Cromatina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Hibridização In Situ , Glomérulos Renais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Podócitos/citologia , Podócitos/metabolismo , RNA Longo não Codificante/genética
5.
BMC Nephrol ; 19(1): 179, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005635

RESUMO

BACKGROUND: Angiotensin II (Ang II) contributes to the progression of renal diseases associated with proteinuria and glomerulosclerosis mainly by inducing podocyte apoptosis. In the present study, we investigated whether the chronic effects of Ang II via AT1 receptor (AT1R) would result in endoplasmic reticulum (ER) stress/PKC-delta/p38 MAPK stimulation, and consequently podocyte apoptosis. METHODS: Wistar rats were treated with Ang II (200 ng·kg-1·min-1, 42 days) and or losartan (10 mg·kg-1·day-1, 14 days). Immortalized mouse podocyte were treated with 1 µM Ang II and/or losartan (1 µM) or SB203580 (0.1 µM) (AT1 receptor antagonist and p38 MAPK inhibitor) for 24 h. Kidney sections and cultured podocytes were used to evaluate protein expression by immunofluorescence and immunoblotting. Apoptosis was evaluated by flow cytometry and intracellular pH (pHi) was analyzed using microscopy combined with the fluorescent probe BCECF/AM. RESULTS: Compared with controls, Ang II via AT1R increased chaperone GRP 78/Bip protein expression in rat glomeruli (p < 0.001) as well as in podocyte culture (p < 0.01); increased phosphorylated eIf2-α (p < 0.05), PKC-delta (p < 0.01) and p38 MAPK (p < 0.001) protein expression. Furthermore, Ang II induced p38 MAPK-mediated late apoptosis and increased the Bax/Bcl-2 ratio (p < 0.001). Simultaneously, Ang II via AT1R induced p38 MAPK-NHE1-mediated increase of pHi recovery rate after acid loading. CONCLUSION: Together, our results indicate that Ang II-induced podocyte apoptosis is associated with AT1R/ER stress/PKC-delta/p38 MAPK axis and enhanced NHE1-mediated pHi recovery rate.


Assuntos
Angiotensina II/toxicidade , Estresse do Retículo Endoplasmático/fisiologia , Podócitos/metabolismo , Proteína Quinase C-delta/metabolismo , Trocador 1 de Sódio-Hidrogênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular Transformada , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Camundongos , Podócitos/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar
6.
J Am Soc Nephrol ; 28(9): 2641-2653, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28424277

RESUMO

The nonreceptor kinase Janus kinase 2 (JAK2) has garnered attention as a promising therapeutic target for the treatment of CKD. However, being ubiquitously expressed in the adult, JAK2 is also likely to be necessary for normal organ function. Here, we investigated the phenotypic effects of JAK2 deficiency. Mice in which JAK2 had been deleted from podocytes exhibited an elevation in urine albumin excretion that was accompanied by increased podocyte autophagosome fractional volume and p62 aggregation, which are indicative of impaired autophagy completion. In cultured podocytes, knockdown of JAK2 similarly impaired autophagy and led to downregulation in the expression of lysosomal genes and decreased activity of the lysosomal enzyme, cathepsin D. Because transcription factor EB (TFEB) has recently emerged as a master regulator of autophagosome-lysosome function, controlling the expression of several of the genes downregulated by JAK2 knockdown, we questioned whether TFEB is regulated by JAK2. In immortalized mouse podocytes, JAK2 knockdown decreased TFEB promoter activity, expression, and nuclear localization. In silico analysis and chromatin immunoprecipitation assays revealed that the downstream mediator of JAK2 signaling STAT1 binds to the TFEB promoter. Finally, overexpression of TFEB in JAK2-deficient podocytes reversed lysosomal dysfunction and restored albumin permselectivity. Collectively, these observations highlight the homeostatic actions of JAK2 in podocytes and the importance of TFEB to autophagosome-lysosome function in these cells. These results also raise the possibility that therapeutically modulating TFEB activity may improve podocyte health in glomerular disease.


Assuntos
Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Janus Quinase 2/genética , Podócitos/metabolismo , Albuminúria/genética , Animais , Autofagossomos/ultraestrutura , Catepsina D/metabolismo , Células Cultivadas , Simulação por Computador , Regulação para Baixo , Técnicas de Silenciamento de Genes , Janus Quinase 2/deficiência , Janus Quinase 2/metabolismo , Glomérulos Renais/citologia , Lisossomos/ultraestrutura , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Peptídeos/metabolismo , Fenótipo , Podócitos/ultraestrutura , RNA Mensageiro/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
7.
Kidney Blood Press Res ; 42(6): 1277-1289, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29262407

RESUMO

BACKGROUND/AIMS: To assess the possible contribution of the ß-adrenergic overstimulation in early stages of renal injury, the present study evaluated, in rats, the effects of the ß-adrenoceptor agonist isoproterenol (ISO) on renal function and morphology, as well as the renal mRNA and protein expression of the NADPH oxidase isoform 4 (Nox 4) and subunit p22phox, endoplasmic reticulum (ER) stress, pro-inflammatory, pro-apoptotic and renin-angiotensin system (RAS) components. METHODS: Wistar rats received ISO (0.3 mg.kg-1.day-1 s.c.) or vehicle (control) for eight days. At the end of the treatment, food and water intake, urine output and body weight gain were evaluated and renal function studies were performed. Renal tissue was used for the morphological, quantitative PCR and immunohistochemical studies. RESULTS: ISO did not change metabolic parameters or urine output. However it induced a decrease in renal blood flow and an increase in the filtration fraction. These changes were accompanied by increased cortical mRNA and protein expression for the renal oxidative stress components including Nox 4 and p22phox; ER stress, pro-inflamatory, pro-apoptotic as well as RAS components. ISO also induced a significant increase in medullar renin protein expression. CONCLUSION: These findings support relevant information regarding the contribution of specific ß-adrenergic hyperactivity in early stage of renal injury, indicating the reactive oxygen species, ER stress and intrarenal RAS as important factors in this process.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Rim/lesões , Animais , Estresse do Retículo Endoplasmático , Isoproterenol/farmacologia , Testes de Função Renal , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Sistema Renina-Angiotensina
8.
Am J Physiol Renal Physiol ; 310(11): F1295-307, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26962104

RESUMO

Chronic angiotensin II (ANG II) infusion for 1 or 2 wk leads to progressive hypertension and induces inward hypertrophic remodeling in preglomerular vessels, which is associated with increased renal vascular resistance (RVR) and decreased glomerular perfusion. Considering the ability of preglomerular vessels to exhibit adaptive responses, the present study was performed to evaluate glomerular perfusion and renal function after 6 wk of ANG II infusion. To address this study, male Wistar rats were submitted to sham surgery (control) or osmotic minipump insertion (ANG II 200 ng·kg(-1)·min(-1), 42 days). A group of animals was treated or cotreated with losartan (10 mg·kg(-1)·day(-1)), an AT1 receptor antagonist, between days 28 and 42 Chronic ANG II infusion increased systolic blood pressure to 185 ± 4 compared with 108 ± 2 mmHg in control rats. Concomitantly, ANG II-induced hypertension increased intrarenal ANG II level and consequently, preglomerular and glomerular injury. Under this condition, ANG II enhanced the total renal plasma flow (RPF), glomerular filtration rate (GFR), urine flow and induced pressure natriuresis. These changes were accompanied by lower RVR and enlargement of the lumen of interlobular arteries and afferent arterioles, consistent with impairment of renal autoregulatory capability and outward preglomerular remodeling. The glomerular injury culminated with podocyte effacement, albuminuria, tubulointerstitial macrophage infiltration and intrarenal extracellular matrix accumulation. Losartan attenuated most of the effects of ANG II. Our findings provide new information regarding the contribution of ANG II infusion over 2 wk to renal hemodynamics and function via the AT1 receptor.


Assuntos
Angiotensina II/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Rim/efeitos dos fármacos , Circulação Renal/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Taxa de Filtração Glomerular/efeitos dos fármacos , Rim/irrigação sanguínea , Losartan/farmacologia , Masculino , Natriurese/efeitos dos fármacos , Ratos , Ratos Wistar , Resistência Vascular/efeitos dos fármacos
9.
Cell Physiol Biochem ; 40(3-4): 608-620, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27898405

RESUMO

AIM: To assess the renal effects of chronic exposure to advanced glycation end-products (AGEs) in the absence of diabetes and the potential impact of concomitant treatment with the antioxidant N-acetyl cysteine (NAC). METHODS: Wistar rats received intraperitoneally 20 mg/kg/day of albumin modified (AlbAGE) or not (AlbC) by advanced glycation for 12 weeks and oral NAC (600mg/L; AlbAGE+NAC and AlbC+NAC, respectively). Biochemical, urinary and renal morphological analyses; carboxymethyl-lysine (CML, an AGE), CD68 (macrophage infiltration), and 4-hydroxynonenal (4-HNE, marker of oxidative stress) immunostaining; intrarenal mRNA expression of genes belonging to pathways related to AGEs (Ager, Ddost, Nfkb1), renin-angiotensin system (Agt, Ren, Ace), fibrosis (Tgfb1, Col4a1), oxidative stress (Nox4, Txnip), and apoptosis (Bax, Bcl2); and reactive oxidative species (ROS) content were performed. RESULTS: AlbAGE significantly increased urine protein-to-creatinine ratio; glomerular area; renal CML content and macrophage infiltration; expression of Ager, Nfkb1, Agt, Ren, Tgfb1, Col4a1, Txnip, Bax/Bcl2 ratio; and 4-HNE and ROS contents. Some of these effects were attenuated by NAC concomitant treatment. CONCLUSION: Because AGEs are highly consumed in modern diets and implicated in the progression of different kidney diseases, NAC could be a therapeutic intervention to decrease renal damage, considering that long-term restriction of dietary AGEs is difficult to achieve in practice.


Assuntos
Acetilcisteína/farmacologia , Diabetes Mellitus Experimental/patologia , Produtos Finais de Glicação Avançada/toxicidade , Rim/patologia , Animais , Antioxidantes/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Albumina Sérica/metabolismo
10.
Front Endocrinol (Lausanne) ; 14: 1167546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091852

RESUMO

Diabetic kidney disease (DKD) is the leading cause of the end-stage renal disease. Recent studies have shown that epigenetic modifications contribute to alterations in gene expression and the development of DKD. This study aimed to show an expression profile of key DNA (de)methylation enzymes (DNMT, TET proteins) and their differences between sexes under obesity and diabetic condition. Male and female black and tan brachyury (BTBR) ob/ob mice and their corresponding wild-type littermates (BTBR WT) were studied until 16 weeks of age. Metabolic parameters, kidney morphophysiology and the expression of fibrotic markers and epigenetic enzymes were studied in whole kidney tissue or specifically in the glomerulus. The results showed sexual dimorphism in the development of metabolic disease and in kidney morphophysiology. Female mice have a different profile of DNMTs expression in both WT and obese/diabetic condition. Furthermore, metabolic condition negatively modulated the glomerular expression of TET1 and TET3 only in females. To our knowledge, this is the first study that shows a kidney profile of the expression of key (de)methylation enzymes, DNMTs and TETs, in the BTBR ob/ob experimental model of DKD and its association with sex. The knowledge of this epigenetic profile may help future research to understand the pathophysiology of DKD in males and females.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Masculino , Feminino , Camundongos , Animais , Metilação de DNA , Diabetes Mellitus Tipo 2/complicações , Camundongos Obesos , Rim/metabolismo , Nefropatias Diabéticas/metabolismo , Obesidade/metabolismo
11.
Sci Rep ; 13(1): 22685, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114708

RESUMO

Focal segmental glomerulosclerosis (FSGS) is the leading cause of nephrotic syndrome, which is characterized by podocyte injury. Given that the pathophysiology of nondiabetic glomerulosclerosis is poorly understood and targeted therapies to prevent glomerular disease are lacking, we decided to investigate the tight junction protein claudin-1 and the histone deacetylase sirtuin-1 (SIRT1), which are known to be involved in podocyte injury. For this purpose, we first examined SIRT1, claudin-1 and podocin expression in kidney biopsies from patients diagnosed with nondiabetic FSGS and found that upregulation of glomerular claudin-1 accompanies a significant reduction in glomerular SIRT1 and podocin levels. From this, we investigated whether a small molecule activator of SIRT1, SRT1720, could delay the onset of FSGS in an animal model of adriamycin (ADR)-induced nephropathy; 14 days of treatment with SRT1720 attenuated glomerulosclerosis progression and albuminuria, prevented transcription factor Wilms tumor 1 (WT1) downregulation and increased glomerular claudin-1 in the ADR + SRT1720 group. Thus, we evaluated the effect of ADR and/or SRT1720 in cultured mouse podocytes. The results showed that ADR [1 µM] triggered an increase in claudin-1 expression after 30 min, and this effect was attenuated by pretreatment of podocytes with SRT1720 [5 µM]. ADR [1 µM] also led to changes in the localization of SIRT1 and claudin-1 in these cells, which could be associated with podocyte injury. Although the use of specific agonists such as SRT1720 presents some benefits in glomerular function, their underlying mechanisms still need to be further explored for therapeutic use. Taken together, our data indicate that SIRT1 and claudin-1 are relevant for the pathophysiology of nondiabetic FSGS.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefropatias , Podócitos , Humanos , Camundongos , Animais , Glomerulosclerose Segmentar e Focal/patologia , Claudina-1/genética , Claudina-1/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Glomérulos Renais/patologia , Podócitos/metabolismo , Nefropatias/patologia , Doxorrubicina/farmacologia
12.
Front Cell Dev Biol ; 10: 839109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392173

RESUMO

Endothelial-to-mesenchymal transition (EndMT) is a hallmark of diabetes-associated vascular complications. Epigenetic mechanisms emerged as one of the key pathways to regulate diabetes-associated complications. In the current study, we aimed to determine how abrupt changes in histone 3 lysine 4 tri-methylation (H3K4me3) upon hyperglycemia exposure reprograms endothelial cells to undergo EndMT. Through in vitro studies, we first establish that intermittent high-glucose exposure to EC most potently induced partial mesenchyme-like characteristics compared with transient or constant high-glucose-challenged endothelial cells. In addition, glomerular endothelial cells of BTBR Ob/Ob mice also exhibited mesenchymal-like characteristics. Intermittent hyperglycemia-dependent induction of partial mesenchyme-like phenotype of endothelial cells coincided with an increase in H3K4me3 level in both macro- and micro-vascular EC due to selective increase in MLL2 and WDR82 protein of SET1/COMPASS complex. Such an endothelial-specific heightened H3K4me3 level was also detected in intermittent high-glucose-exposed rat aorta and in kidney glomeruli of Ob/Ob mice. Elevated H3K4me3 enriched in the promoter regions of Notch ligands Jagged1 and Jagged2, thus causing abrupt expression of these ligands and concomitant activation of Notch signaling upon intermittent hyperglycemia challenge. Pharmacological inhibition and/or knockdown of MLL2 in cells in vitro or in tissues ex vivo normalized intermittent high-glucose-mediated increase in H3K4me3 level and further reversed Jagged1 and Jagged2 expression, Notch activation and further attenuated acquisition of partial mesenchyme-like phenotype of endothelial cells. In summary, the present study identifies a crucial role of histone methylation in hyperglycemia-dependent reprograming of endothelial cells to undergo mesenchymal transition and indicated that epigenetic pathways contribute to diabetes-associated vascular complications.

13.
J Mol Med (Berl) ; 99(6): 785-803, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33763722

RESUMO

Chronic kidney disease (CKD) is a major public health concern and its prevalence and incidence are rising quickly. It is a non-communicable disease primarily caused by diabetes and/or hypertension and is associated with high morbidity and mortality. Despite decades of research efforts, the pathogenesis of CKD remains a puzzle with missing pieces. Understanding the cellular and molecular mechanisms that govern the loss of kidney function is crucial. Abrupt regulation of gene expression in kidney cells is apparent in CKD and shown to be responsible for disease onset and progression. Gene expression regulation extends beyond DNA sequence and involves epigenetic mechanisms including changes in DNA methylation and post-translational modifications of histones, driven by the activity of specific enzymes. Recent advances demonstrate the essential participation of epigenetics in kidney (patho)physiology, as its actions regulate both the integrity of cells but also triggers deleterious signaling pathways. Here, we review the known epigenetic processes regulating the complex filtration unit of the kidney, the glomeruli. The review will elaborate on novel insights into how epigenetics contributes to cell injury in the CKD setting majorly focusing on kidney glomerular cells: the glomerular endothelial cells, the mesangial cells, and the specialized and terminally differentiated podocyte cells.


Assuntos
Suscetibilidade a Doenças , Epigênese Genética , Regulação da Expressão Gênica , Nefropatias/etiologia , Nefropatias/metabolismo , Glomérulos Renais/citologia , Glomérulos Renais/metabolismo , Animais , Biomarcadores , Metilação de DNA , Células Endoteliais/metabolismo , Histonas/metabolismo , Humanos , Nefropatias/patologia , Glomérulos Renais/patologia , Células Mesangiais/metabolismo , Podócitos/metabolismo , Processamento de Proteína Pós-Traducional
14.
Life Sci ; 270: 118997, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33453249

RESUMO

Advanced glycation end products (AGEs) play an important role in oxidative stress and inflammation, processes implicated in the development and progression of kidney dysfunction. In the present study, we investigated the participation of the pro-oxidant protein thioredoxin-interacting protein (TXNIP) and of epigenetic mechanisms on kidney tissue (in vivo, in non-diabetic rats) and on terminally differentiated glomerular podocytes (in vitro) chronically exposed to AGEs. AGEs induced total kidney and glomerular TXNIP expression and decreased H3K27me3 content. Concomitant treatment with the antioxidant N-acetyl-cysteine (NAC) reversed only the increased TXNIP expression. TXNIP expression positively correlated with proteinuria and negatively correlated with H3K27me3 content. In vitro studies in podocytes showed that 72 h exposure to AGEs decreased nephrin expression and increased Txnip, Nox4, Col4a1, and epithelial-to-mesenchymal transition (EMT) markers (Acta2, Snail1, and Tgfb1). Podocytes treatment with NAC reversed Nox4, Col4a1, Acta2, and Tgfb1 increased expression but did not abrogate the reduced expression of nephrin. MiR-29a expression was downregulated by AGEs in vivo, but not in vitro. In conclusion, treatment of non-diabetic rats with AGEs induced TXNIP expression and decreased the contents of the repressive epigenetic mark H3K27me3 and of miR-29a, potentially driving injury to glomerular filtration barrier and podocytes dysfunction.


Assuntos
Proteínas de Ciclo Celular/genética , Nefropatias Diabéticas/metabolismo , Produtos Finais de Glicação Avançada/farmacologia , Animais , Antioxidantes/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/genética , Epigênese Genética/genética , Células Epiteliais/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Produtos Finais de Glicação Avançada/metabolismo , Histonas , Rim/citologia , Rim/metabolismo , Glomérulos Renais/metabolismo , Masculino , Proteínas de Membrana , Estresse Oxidativo , Podócitos/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
15.
Cell Physiol Biochem ; 26(4-5): 541-52, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21063092

RESUMO

We examined the effect of Angiotensin II (Ang II) on the interaction between the Ca(2+)/CaM complex and hNHE1. Considering that calmodulin binds to NHE1 at two sites (A and B), amino acids at both sites were modified and two mutants were constructed: SA(1K3R/4E) and SB(1K3R/4E). Wild type and mutants were transfected into PS120 cells and their activity was examined by H(+) flux (J(H+)). The basal J(H+) of wild type was 4.71 ± 0.57 (mM/min), and it was similar in both mutants. However, the mutations partially impaired the binding of CaM to hNHE1. Ang II (10(-12) and 10(-9) M) increased the J(H+) in wild type and SB. Ang II (10(-6) M) increased this parameter only in SA. Ang II (10(-9) M) maintained the expression of calmodulin in wild type or mutants, and Ang II (10(-6) M) decreased it in wild type or SA, but not in SB. Dimethyl-Bapta-AM (10(-7) M), a calcium chelator, suppressed the effect of Ang II (10(-9) M) in wild type. With Ang II (10(-6) M), Bapta failed to affect wild type or SA, but it increased the J(H+) in SB. W13 or calmidazolium chloride (10(-5) M), two distinct calmodulin inhibitors, decreased the effect of Ang II (10(-9) M) in wild type or SB. With Ang II (10(-6) M), W13 or calmidazolium chloride decreased the J(H+) in wild type or SA and increased it in SB. Thus, with Ang II (10(-12) and 10(-9) M), site A seems to be responsible for the stimulation of hNHE1 and with Ang II (10(-6) M), site B is important to maintain its basal activity.


Assuntos
Angiotensina II/fisiologia , Calmodulina/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Substituição de Aminoácidos , Angiotensina II/farmacologia , Animais , Sítios de Ligação , Cálcio/metabolismo , Calmodulina/antagonistas & inibidores , Linhagem Celular , Cricetinae , Cricetulus , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Imidazóis/farmacologia , Mutagênese Sítio-Dirigida , Isoformas de Proteínas/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Sulfonamidas/farmacologia , Transfecção
16.
Life Sci ; 257: 118061, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32652137

RESUMO

Obesity is an independent risk factor for the development of chronic kidney disease. The pathophysiology of the obesity-induced kidney injury is complex, but evidence suggests the involvement of reduced adiponectin levels and signaling. We investigated the extent by which adiponectin contributes to the establishment and progression of renal disease in wild type (WT) and adiponectin null (adipoKO) mice fed a control or a high-fat diet (HFD) for 16 weeks. HFD induced obesity, kidney hypertrophy, albuminuria, renal lipid accumulation and decreased nephrin expression in both mice genotypes. Notably, HFD in adipoKO mice exacerbated progression of albuminuria in comparison to WT mice. In addition, lack of adiponectin per se increased kidney weight, reduced nephrin levels, up-regulated Fabp4 expression, reduced Cpt1a expression and increased miR-130 levels in kidney. Our results demonstrate that lack of adiponectin combined with a HFD contributes to accelerated kidney dysfunction.


Assuntos
Adiponectina/genética , Albuminúria/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Obesidade/complicações , Insuficiência Renal Crônica/fisiopatologia , Albuminúria/genética , Animais , Carnitina O-Palmitoiltransferase/genética , Modelos Animais de Doenças , Progressão da Doença , Proteínas de Ligação a Ácido Graxo/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Insuficiência Renal Crônica/genética
17.
Front Physiol ; 11: 586290, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101064

RESUMO

The Barker hypothesis strongly supported the influence of fetal environment on the development of chronic diseases in later life. Multiple experimental and human studies have identified that the deleterious effect of fetal programming commonly leads to alterations in renal development. The interplay between environmental insults and fetal genome can induce epigenetic changes and lead to alterations in the expression of renal phenotype. In this review, we have explored the renal development and its functions, while focusing on the epigenetic findings and functional aspects of the renin-angiotensin system and its components.

18.
Artigo em Inglês | MEDLINE | ID: mdl-32425885

RESUMO

Introduction: Using a discovery/validation approach we investigated associations between a panel of genes selected from a transcriptomic study and the estimated glomerular filtration rate (eGFR) decline across time in a cohort of type 1 diabetes (T1D) patients. Experimental: Urinary sediment transcriptomic was performed to select highly modulated genes in T1D patients with rapid eGFR decline (decliners) vs. patients with stable eGFR (non-decliners). The selected genes were validated in samples from a T1D cohort (n = 54, mean diabetes duration of 21 years, 61% women) followed longitudinally for a median of 12 years in a Diabetes Outpatient Clinic. Results: In the discovery phase, the transcriptomic study revealed 158 genes significantly different between decliners and non-decliners. Ten genes increasingly up or down-regulated according to renal function worsening were selected for validation by qRT-PCR; the genes CYP4F22, and PMP22 were confirmed as differentially expressed comparing decliners vs. non-decliners after adjustment for potential confounders. CYP4F22, LYPD3, PMP22, MAP1LC3C, HS3ST2, GPNMB, CDH6, and PKD2L1 significantly modified the slope of eGFR in T1D patients across time. Conclusions: Eight genes identified as differentially expressed in the urinary sediment of T1D patients presenting different eGFR decline rates significantly increased the accuracy of predicted renal function across time in the studied cohort. These genes may be a promising way of unveiling novel mechanisms associated with diabetic kidney disease progression.


Assuntos
Biomarcadores/urina , Diabetes Mellitus Tipo 1/complicações , Nefropatias Diabéticas/diagnóstico , Insuficiência Renal Crônica/diagnóstico , Transcriptoma , Adulto , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/urina , Progressão da Doença , Feminino , Seguimentos , Taxa de Filtração Glomerular , Humanos , Estudos Longitudinais , Masculino , Prognóstico , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/urina , Fatores de Risco
20.
Sci Rep ; 8(1): 18012, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30573754

RESUMO

Podocyte injury is closely related to proteinuria and the progression of chronic kidney disease (CKD). Currently, there is no conclusive understanding about the mechanisms involved in albumin overload and podocyte apoptosis response. In this study, we sought to explore the ways by which intracellular albumin can mediate podocyte apoptosis. Here, immortalized mouse podocytes were treated with bovine serum albumin (BSA) at different times and concentrations, in the presence or absence of SB203580 (0.1 µM, inhibitor of mitogen-activated-protein kinase - p38MAPK). Using immunofluorescence images, flow cytometry and immunoblotting, we observed a time-dependent intracellular accumulation of fluorescent albumin-FITC-BSA, followed by concentration-and time-dependent effect of intracellular albumin overload on podocyte apoptosis, which was mediated by increased expression of the chaperone glucose-regulated-protein 78 (GRP 78) and phosphorylated inositol-requiring enzyme 1 alpha (pIRE1-α), as well as protein kinase C delta (PKC-δ), p38MAPK and cleaved caspase 12 expression. SB203580 prevented the cleavage of caspase 12 and the albumin-mediated podocyte apoptosis. These results suggest that intracellular albumin overload is associated with endoplasmic reticulum (ER) stress and upregulation of PKC-δ/p38MAPK/caspase 12 pathway, which may be a target for future therapeutic of albumin-induced podocyte apoptosis.


Assuntos
Albuminas/farmacologia , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Podócitos/fisiologia , Proteína Quinase C-delta/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Albuminas/metabolismo , Albuminúria/metabolismo , Albuminúria/patologia , Animais , Células Cultivadas , Citoplasma/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Fluoresceína-5-Isotiocianato/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Podócitos/metabolismo , Albumina Sérica/metabolismo , Albumina Sérica/farmacologia , Soroalbumina Bovina/metabolismo , Soroalbumina Bovina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA