Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Proteome Res ; 19(7): 2863-2872, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32407631

RESUMO

Label-free quantitative proteomics has become an increasingly popular tool for profiling global protein abundances. However, one major limitation is the potential performance drift of the LC-MS platform over time, which, in turn, limits its utility for analyzing large-scale sample sets. To address this, we introduce an experimental and data analysis scheme based on a block design with common references within each block for enabling large-scale label-free quantification. In this scheme, a large number of samples (e.g., >100 samples) are analyzed in smaller and more manageable blocks, minimizing instrument drift and variability within individual blocks. Each designated block also contains common reference samples (e.g., controls) for normalization across all blocks. We demonstrated the robustness of this approach by profiling the proteome response of human macrophage THP-1 cells to 11 engineered nanomaterials at two different doses. A total of 116 samples were analyzed in six blocks, yielding an average coverage of 4500 proteins per sample. Following a common reference-based correction, 2537 proteins were quantified with high reproducibility without any imputation of missing values from 116 data sets. The data revealed the consistent quantification of proteins across all six blocks, as illustrated by the highly consistent abundances of house-keeping proteins in all samples and the high levels of correlation among samples from different blocks. The data also demonstrated that label-free quantification is robust and accurate enough to quantify even very subtle abundance changes as well as large fold-changes. Our streamlined workflow is easy to implement and can be readily adapted to other large cohort studies for reproducible label-free proteome quantification.


Assuntos
Proteoma , Proteômica , Cromatografia Líquida , Humanos , Espectrometria de Massas , Reprodutibilidade dos Testes , Células THP-1
2.
Small ; 16(21): e1907640, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32196921

RESUMO

In the last decade, along with the increasing use of graphene oxide (GO) in various applications, there is also considerable interest in understanding its effects on human health. Only a few experimental approaches can simulate common routes of exposure, such as ingestion, due to the inherent complexity of the digestive tract. This study presents the synthesis of size-sorted GO of sub-micrometer- or micrometer-sized lateral dimensions, its physicochemical transformations across mouth, gastric, and small intestinal simulated digestions, and its toxicological assessment against a physiologically relevant, in vitro cellular model of the human intestinal epithelium. Results from real-time characterization of the simulated digestas of the gastrointestinal tract using multi-angle laser diffraction and field-emission scanning electron microscopy show that GO agglomerates in the gastric and small intestinal phase. Extensive morphological changes, such as folding, are also observed on GO following simulated digestion. Furthermore, X-ray photoelectron spectroscopy reveals that GO presents covalently bound N-containing groups on its surface. It is shown that the GO employed in this study undergoes reduction. Toxicological assessment of the GO small intestinal digesta over 24 h does not point to acute cytotoxicity, and examination of the intestinal epithelium under electron microscopy does not reveal histological alterations. Both sub-micrometer- and micrometer-sized GO variants elicit a 20% statistically significant increase in reactive oxygen species generation compared to the untreated control after a 6 h exposure.


Assuntos
Digestão , Grafite , Mucosa Intestinal , Grafite/síntese química , Grafite/isolamento & purificação , Grafite/toxicidade , Humanos , Técnicas In Vitro , Mucosa Intestinal/efeitos dos fármacos , Tamanho da Partícula , Espectroscopia Fotoeletrônica
3.
Proc Natl Acad Sci U S A ; 114(6): 1246-1251, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28115713

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) have toxic impacts on humans and ecosystems. One of the most carcinogenic PAHs, benzo(a)pyrene (BaP), is efficiently bound to and transported with atmospheric particles. Laboratory measurements show that particle-bound BaP degrades in a few hours by heterogeneous reaction with ozone, yet field observations indicate BaP persists much longer in the atmosphere, and some previous chemical transport modeling studies have ignored heterogeneous oxidation of BaP to bring model predictions into better agreement with field observations. We attribute this unexplained discrepancy to the shielding of BaP from oxidation by coatings of viscous organic aerosol (OA). Accounting for this OA viscosity-dependent shielding, which varies with temperature and humidity, in a global climate/chemistry model brings model predictions into much better agreement with BaP measurements, and demonstrates stronger long-range transport, greater deposition fluxes, and substantially elevated lung cancer risk from PAHs. Model results indicate that the OA coating is more effective in shielding BaP in the middle/high latitudes compared with the tropics because of differences in OA properties (semisolid when cool/dry vs. liquid-like when warm/humid). Faster chemical degradation of BaP in the tropics leads to higher concentrations of BaP oxidation products over the tropics compared with higher latitudes. This study has profound implications demonstrating that OA strongly modulates the atmospheric persistence of PAHs and their cancer risks.


Assuntos
Atmosfera/química , Benzo(a)pireno/química , Carcinógenos/química , Neoplasias Pulmonares/induzido quimicamente , Modelos Químicos , Aerossóis , Benzo(a)pireno/efeitos adversos , Clima , Humanos , Oxirredução , Medição de Risco
4.
J Am Chem Soc ; 141(1): 42-47, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30541282

RESUMO

Commensal microorganisms in the mammalian gut play important roles in host health and physiology, but a central challenge remains in achieving a detailed mechanistic understanding of specific microbial contributions to host biochemistry. New function-based approaches are needed that analyze gut microbial function at the molecular level by coupling detection and measurements of in situ biochemical activity with identification of the responsible microbes and enzymes. We developed a platform employing ß-glucuronidase selective activity-based probes to detect, isolate, and identify microbial subpopulations in the gut responsible for this xenobiotic metabolism. We find that metabolic activity of gut microbiota can be plastic and that between individuals and during perturbation, phylogenetically disparate populations can provide ß-glucuronidase activity. Our work links biochemical activity with molecular-scale resolution without relying on genomic inference.


Assuntos
Microbioma Gastrointestinal , Sondas Moleculares/metabolismo , Glucuronidase/metabolismo , Sondas Moleculares/química , Xenobióticos/metabolismo
5.
Anal Bioanal Chem ; 410(24): 6067-6077, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29947897

RESUMO

The widespread use of engineered nanomaterials or nanotechnology makes the characterization of biological responses to nanomaterials an important area of research. The application of omics approaches, such as mass spectrometry-based proteomics, has revealed new insights into the cellular responses of exposure to nanomaterials, including how nanomaterials interact and alter cellular pathways. In addition, exposure to engineered nanomaterials often leads to the generation of reactive oxygen species and cellular oxidative stress, which implicates a redox-dependent regulation of cellular responses under such conditions. In this review, we discuss quantitative proteomics-based approaches, with an emphasis on redox proteomics, as a tool for system-level characterization of the biological responses induced by engineered nanomaterials. Graphical abstract ᅟ.


Assuntos
Espectrometria de Massas/métodos , Nanoestruturas/efeitos adversos , Estresse Oxidativo , Proteoma/metabolismo , Proteômica/métodos , Transdução de Sinais , Animais , Dano ao DNA/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Humanos , Nanoestruturas/química , Nanoestruturas/toxicidade , Nanotecnologia/métodos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteoma/análise , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Part Fibre Toxicol ; 15(1): 47, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518385

RESUMO

BACKGROUND: When suspended in cell culture medium, nano-objects composed of soluble metals such as silver can dissolve resulting in ion formation, altered particle properties (e.g. mass, morphology, etc.), and modulated cellular dose. Cultured cells are exposed not just to nanoparticles but to a complex, dynamic mixture of altered nanoparticles, unbound ions, and ion-ligand complexes. Here, three different cell types (RAW 264.7 macrophages and bone marrow derived macrophages from wild-type C57BL/6 J mice and Scavenger Receptor A deficient (SR-A(-/-)) mice) were exposed to 20 and 110 nm silver nanoparticles, and RAW 264.7 cells were exposed to freshly mixed silver ions, aged silver ions (ions incubated in cell culture medium), and ions formed from nanoparticle dissolution. The In Vitro Sedimentation, Diffusion, Dissolution, and Dosimetry Model (ISD3) was used to predict dose metrics for each exposure scenario. RESULTS: Silver nanoparticles, freshly mixed ions, and ions from nanoparticle dissolution were toxic, while aged ions were not toxic. Macrophages from SR-A(-/-) mice did not take up 20 nm silver nanoparticles as well as wild-types but demonstrated no differences in silver levels after exposure to 110 nm nanoparticles. Dose response modeling with ISD3 predicted dose metrics suggest that amount of ions in cells and area under the curve (AUC) of ion amount in cells are the most predictive of cell viability after nanoparticle and combined nanoparticle/dissolution-formed-ions exposures, respectively. CONCLUSIONS: Results of this study suggest that the unbound silver cation is the ultimate toxicant, and ions formed extracellularly drive toxicity after exposure to nanoparticles. Applying computational modeling (ISD3) to better understand dose metrics for soluble nanoparticles allows for better interpretation of in vitro hazard assessments.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Animais , Cátions , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho da Partícula , Células RAW 264.7 , Receptores Depuradores Classe A/genética , Prata/administração & dosagem , Prata/química , Solubilidade , Propriedades de Superfície
7.
Part Fibre Toxicol ; 15(1): 6, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29368623

RESUMO

BACKGROUND: The development of particokinetic models describing the delivery of insoluble or poorly soluble nanoparticles to cells in liquid cell culture systems has improved the basis for dose-response analysis, hazard ranking from high-throughput systems, and now allows for translation of exposures across in vitro and in vivo test systems. Complimentary particokinetic models that address processes controlling delivery of both particles and released ions to cells, and the influence of particle size changes from dissolution on particle delivery for cell-culture systems would help advance our understanding of the role of particles and ion dosimetry on cellular toxicology. We developed ISD3, an extension of our previously published model for insoluble particles, by deriving a specific formulation of the Population Balance Equation for soluble particles. RESULTS: ISD3 describes the time, concentration and particle size dependent dissolution of particles, their delivery to cells, and the delivery and uptake of ions to cells in in vitro liquid test systems. We applied the model to calculate the particle and ion dosimetry of nanosilver and silver ions in vitro after calibration of two empirical models, one for particle dissolution and one for ion uptake. Total media ion concentration, particle concentration and total cell-associated silver time-courses were well described by the model, across 2 concentrations of 20 and 110 nm particles. ISD3 was calibrated to dissolution data for 20 nm particles as a function of serum protein concentration, but successfully described the media and cell dosimetry time-course for both particles at all concentrations and time points. We also report the finding that protein content in media affects the initial rate of dissolution and the resulting near-steady state ion concentration in solution for the systems we have studied. CONCLUSIONS: By combining experiments and modeling, we were able to quantify the influence of proteins on silver particle solubility, determine the relative amounts of silver ions and particles in exposed cells, and demonstrate the influence of particle size changes resulting from dissolution on particle delivery to cells in culture. ISD3 is modular and can be adapted to new applications by replacing descriptions of dissolution, sedimentation and boundary conditions with those appropriate for particles other than silver.


Assuntos
Macrófagos Alveolares/metabolismo , Modelos Biológicos , Nanopartículas/química , Nanopartículas/metabolismo , Prata/química , Prata/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Precipitação Química , Meios de Cultura/química , Difusão , Nanopartículas Metálicas/análise , Nanopartículas Metálicas/química , Camundongos , Nanopartículas/análise , Tamanho da Partícula , Prata/análise , Solubilidade , Propriedades de Superfície
8.
Part Fibre Toxicol ; 11: 46, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25266609

RESUMO

BACKGROUND: Toxicity testing the rapidly growing number of nanomaterials requires large scale use of in vitro systems under the presumption that these systems are sufficiently predictive or descriptive of responses in in vivo systems for effective use in hazard ranking. We hypothesized that improved relationships between in vitro and in vivo models of experimental toxicology for nanomaterials would result from placing response data in vitro and in vivo on the same dose scale, the amount of material associated with cells. METHODS: Balb/c mice were exposed nose-only to an aerosol (68.6 nm CMD, 19.9 mg/m(3), 4 hours) generated from of 12.8 nm superparamagnetic iron oxide particles (SPIO). Target cell doses were calculated, histological evaluations conducted, and biomarkers of response were identified by global transcriptomics. Representative murine epithelial and macrophage cell types were exposed in vitro to the same material in liquid suspension for four hours and levels of nanoparticle regulated cytokine transcripts identified in vivo were quantified as a function of measured nanoparticle cellular dose. RESULTS: Target tissue doses of 0.009-0.4 µg SPIO/cm(2) in lung led to an inflammatory response in the alveolar region characterized by interstitial inflammation and macrophage infiltration. In vitro, higher target tissue doses of ~1.2-4 µg SPIO/ cm(2) of cells were required to induce transcriptional regulation of markers of inflammation, CXCL2 & CCL3, in C10 lung epithelial cells. Estimated in vivo macrophage SPIO nanoparticle doses ranged from 1-100 pg/cell, and induction of inflammatory markers was observed in vitro in macrophages at doses of 8-35 pg/cell. CONCLUSIONS: Application of target tissue dosimetry revealed good correspondence between target cell doses triggering inflammatory processes in vitro and in vivo in the alveolar macrophage population, but not in the epithelial cells of the alveolar region. These findings demonstrate the potential for target tissue dosimetry to enable the more quantitative comparison of in vitro and in vivo systems and advance their use for hazard assessment and extrapolation to humans. The mildly inflammogentic cellular doses experienced by mice were similar to those calculated for humans exposed to the same material at the existing permissible exposure limit of 10 mg/m(3) iron oxide (as Fe).


Assuntos
Células Epiteliais/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nanopartículas de Magnetita/toxicidade , Pneumonia/induzido quimicamente , Aerossóis , Animais , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Pneumonia/genética , Pneumonia/metabolismo , Pneumonia/patologia , RNA Mensageiro/metabolismo , Medição de Risco , Fatores de Tempo
9.
NanoImpact ; 30: 100463, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37060994

RESUMO

Graphene oxide (GO) nanomaterials have unique physicochemical properties that make them highly promising for biomedical, environmental, and agricultural applications. There is growing interest in the use of GO and extensive in vitro and in vivo studies have been conducted to assess its nanotoxicity. Although it is known that GO can alter the composition of the gut microbiota in mice and zebrafish, studies on the potential impacts of GO on the human gut microbiome are largely lacking. This study addresses an important knowledge gap by investigating the impact of GO exposure- at low (25 mg/L) and high (250 mg/L) doses under both fed (nutrient rich) and fasted (nutrient deplete) conditions- on the gut microbial communitys' structure and function, using an in vitro model. This model includes simulated oral, gastric, small intestinal phase digestion of GO followed by incubation in a colon bioreactor. 16S rRNA amplicon sequencing revealed that GO exposure resulted in a restructuring of community composition. 25 mg/L GO induced a marked decrease in the Bacteroidota phylum and increased the ratio of Firmicutes to Bacteroidota (F/B). Untargeted metabolomics on the supernatants indicated that 25 mg/L GO impaired microbial utilization and metabolism of substrates (amino acids, carbohydrate metabolites) and reduced production of beneficial microbial metabolites such as 5-hydroxyindole-3-acetic acid and GABA. Exposure to 250 mg/L GO resulted in community composition and metabolome profiles that were very similar to the controls that lacked both GO and digestive enzymes. Differential abundance analyses revealed that 3 genera from the phylum Bacteroidota (Bacteroides, Dysgonomonas, and Parabacteroides) were more abundant after 250 mg/L GO exposure, irrespective of feed state. Integrative correlation network analysis indicated that the phylum Bacteroidota showed strong positive correlations to multiple microbial metabolites including GABA and 3-indoleacetic acid, are much larger number of correlations compared to other phyla. These results show that GO exposure has a significant impact on gut microbial community composition and metabolism at both low and high GO concentrations.


Assuntos
Microbiota , Peixe-Zebra , Humanos , Camundongos , Animais , RNA Ribossômico 16S/genética , Peixe-Zebra/genética , Bacteroidetes/genética , Ácido gama-Aminobutírico
10.
Proteomics ; 11(23): 4569-77, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21956884

RESUMO

Nanoparticle biological activity, biocompatibility and fate can be directly affected by layers of readily adsorbed host proteins in biofluids. Here, we report a study on the interactions between human blood plasma proteins and nanoparticles with a controlled systematic variation of properties using (18)O-labeling and LC-MS-based quantitative proteomics. We developed a novel protocol to both simplify isolation of nanoparticle bound proteins and improve reproducibility. LC-MS analysis identified and quantified 88 human plasma proteins associated with polystyrene nanoparticles consisting of three different surface chemistries and two sizes, as well as, for four different exposure times (for a total of 24 different samples). Quantitative comparison of relative protein abundances was achieved by spiking an (18)O-labeled "universal" reference into each individually processed unlabeled sample as an internal standard, enabling simultaneous application of both label-free and isotopic labeling quantification across the entire sample set. Clustering analysis of the quantitative proteomics data resulted in distinctive patterns that classified the nanoparticles based on their surface properties and size. In addition, temporal data indicated that the formation of the stable protein corona was at equilibrium within 5 min. The comprehensive quantitative proteomics results obtained in this study provide rich data for computational modeling and have potential implications towards predicting nanoparticle biocompatibility.


Assuntos
Proteínas Sanguíneas/análise , Nanopartículas/química , Proteômica/métodos , Adsorção , Análise de Variância , Proteínas Sanguíneas/metabolismo , Cromatografia Líquida/métodos , Análise por Conglomerados , Humanos , Espectrometria de Massas/métodos , Tamanho da Partícula , Poliestirenos/química , Ligação Proteica , Propriedades de Superfície
11.
NanoImpact ; 23: 100349, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34514184

RESUMO

Carbon dots (CDs) are a promising material currently being explored in many industrial applications in the biomedical and agri-food areas; however, studies supporting the environmental health risk assessment of CDs are needed. This study focuses on various CD forms including iron (FeCD) and copper (CuCD) doped CDs synthesized using hydrothermal method, their fate in gastrointestinal tract, and their cytotoxicity and potential changes to cellular metabolome in a triculture small intestinal epithelial model. Physicochemical characterization revealed that 75% of Fe in FeCD and 95% of Cu in CuCD were dissolved during digestion. No significant toxic effects were observed for pristine CDs and FeCDs. However, CuCD induced significant dose-dependent toxic effects including decreases in TEER and cell viability, increases in cytotoxicity and ROS production, and alterations in important metabolites, including D-glucose, L-cysteine, uridine, citric acid and multiple fatty acids. These results support the current understanding that pristine CDs are relatively non-toxic and the cytotoxicity is dependent on the doping molecules.


Assuntos
Carbono , Pontos Quânticos , Carbono/toxicidade , Digestão , Intestino Delgado , Ferro , Pontos Quânticos/química
12.
Environ Sci Nano ; 8(11): 3233-3249, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37465590

RESUMO

Background: Engineered nanomaterials (ENMs) have already made their way into myriad applications and products across multiple industries. However, the potential health risks of exposure to ENMs remain poorly understood. This is particularly true for the emerging class of ENMs know as 2-dimensional nanomaterials (2DNMs), with a thickness of one or a few layers of atoms arranged in a planar structure. Methods: The present study assesses the biotransformations and in vitro cytotoxicity in the gastrointestinal tract of 11 2DNMs, namely graphene, graphene oxide (GO), partially reduced graphene oxide (prGO), reduced graphene oxide (rGO), hexagonal boron nitride (h-BN), molybdenum disulphide (MoS2), and tungsten disulphide (WS2). The evaluated pristine materials were either readily dispersed in water or dispersed with the use of a surfactant (Na-cholate or PF108). Materials dispersed in a fasting food model (FFM, water) were subjected to simulated 3-phase (oral, gastric, and small intestinal) digestion to replicate the biotransformations that would occur in the GIT after ingestion. A triculture model of small intestinal epithelium was used to assess the effects of the digested products (digestas) on epithelial layer integrity, cytotoxicity, viability, oxidative stress, and initiation of apoptosis. Results: Physicochemical characterization of the 2DNMs in FFM dispersions and in small intestinal digestas revealed significant agglomeration by all materials during digestion, most prominently by graphene, which was likely caused by interactions with digestive proteins. Also, MoS2 had dissolved by ~75% by the end of simulated digestion. Other than a low but statistically significant increase in cytotoxicity observed with all inorganic materials and graphene dispersed in PF108, no adverse effects were observed in the exposed tricultures. Conclusions: Our results suggest that occasional ingestion of small quantities of 2DNMs may not be highly cytotoxic in a physiologically relevant in vitro model of the intestinal epithelium. Still, their inflammatory or genotoxic potential after short- or long-term ingestion remains unclear and needs to be studied in future in vitro and in vivo studies. These would include studies of effects on co-ingested nutrient digestion and absorption, which have been documented for numerous ingested ENMs, as well as effects on the gut microbiome, which can have important health implications.

13.
Part Fibre Toxicol ; 7(1): 36, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21118529

RESUMO

BACKGROUND: The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. µg particle/mL culture medium, particle surface area/mL, particle number/mL). We have developed a computational model of solution particokinetics (sedimentation, diffusion) and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation) and the Stokes-Einstein equation (diffusion). RESULTS: The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD) was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm), 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro. CONCLUSIONS: Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a µg/mL basis and target cell doses on a particle surface area or number basis can be as high as three to six orders of magnitude. As a consequence, in vitro hazard assessments utilizing mass-based exposure metrics have inherently high errors where particle number or surface areas target cells doses are believed to drive response. The gold standard for particle dosimetry for in vitro nanotoxicology studies should be direct experimental measurement of the cellular content of the studied particle. However, where such measurements are impractical, unfeasible, and before such measurements become common, particle dosimetry models such as ISDD provide a valuable, immediately useful alternative, and eventually, an adjunct to such measurements.


Assuntos
Simulação por Computador , Compostos Férricos/farmacocinética , Modelos Biológicos , Nanopartículas , Poliestirenos/farmacocinética , Dióxido de Silício/farmacocinética , Alternativas aos Testes com Animais , Transporte Biológico , Biomarcadores Farmacológicos , Células Cultivadas , Precipitação Química , Difusão , Relação Dose-Resposta a Droga , Humanos , Tamanho da Partícula , Medição de Risco , Testes de Toxicidade
14.
NanoImpact ; 172020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32133427

RESUMO

Engineered nanomaterials (ENMs) are widely used in the food industry; however, regulations for ENMs in food are still in the early stages of development due to insufficient health data. This study investigated the cytotoxicity and changes to the proteomic profile in an in vitro small intestinal epithelium model after exposure to digested food models containing the ubiquitous engineered particulate food additive, TiO2 (E171) with an average size around 110 nm. TiO2 at 0.75% or 1.5% (w/w) concentrations in either a fasting food model (FFM) or a standardized food model (SFM) based on American diet were digested using an in vitro oral-gastric-small intestinal simulator, and the resulting digestas were applied to a small intestinal epithelium tri-culture cellular model. Effects on cell layer integrity, cytotoxicity, and oxidative stress were assessed. In order to explore the impact on cellular processes beyond basic cytotoxicity, mass spectrometry-based quantitative proteomic analyses of control and exposed tri-culture cells was performed. TiO2 in FFM, but not in SFM, produced significant, dose-dependent cytotoxicity (24%, p<0.001), and at the higher dose caused significant oxidative stress (1.24-fold, p<0.01), indicative of a food matrix effect. No significant perturbations of the cellular proteome were observed with TiO2 in either FFM or SFM food models. However, proteins involved in energy metabolism and protein synthesis were up-regulated by digestas from SFM compared to those from FFM, indicative of a food matrix effect on the cellular proteome. Interestingly, the differences in profiles between the two food models was more pronounced in the presence of TiO2. Together, these results indicate that TiO2 in a fasting diet may be slightly cytotoxic, and that ingested TiO2 does not significantly alter the epithelial proteome, whereas the food matrix alone can have a dramatic effect on the proteome.

15.
Redox Biol ; 36: 101649, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32750668

RESUMO

Posttranslational modifications of protein cysteine thiols play a significant role in redox regulation and the pathogenesis of human diseases. Herein, we report the characterization of the cellular redox landscape in terms of quantitative, site-specific occupancies of both S-glutathionylation (SSG) and total reversible thiol oxidation (total oxidation) in RAW 264.7 macrophage cells under basal conditions. The occupancies of thiol modifications for ~4000 cysteine sites were quantified, revealing a mean site occupancy of 4.0% for SSG and 11.9% for total oxidation, respectively. Correlations between site occupancies and structural features such as pKa, relative residue surface accessibility, and hydrophobicity were observed. Proteome-wide site occupancy analysis revealed that the average occupancies of SSG and total oxidation in specific cellular compartments correlate well with the expected redox potentials of respective organelles in macrophages, consistent with the notion of redox compartmentalization. The lowest average occupancies were observed in more reducing organelles such as the mitochondria (non-membrane) and nucleus, while the highest average occupancies were found in more oxidizing organelles such as endoplasmic reticulum (ER) and lysosome. Furthermore, a pattern of subcellular susceptibility to redox changes was observed under oxidative stress induced by exposure to engineered metal oxide nanoparticles. Peroxisome, ER, and mitochondria (membrane) are the organelles which exhibit the most significant redox changes; while mitochondria (non-membrane) and Golgi were observed as the organelles being most resistant to oxidative stress. Finally, it was observed that Cys residues at enzymatic active sites generally had a higher level of occupancy compared to non-active Cys residues within the same proteins, suggesting site occupancy as a potential indicator of protein functional sites. The raw data are available via ProteomeXchange with identifier PXD019913.


Assuntos
Proteoma , Compostos de Sulfidrila , Cisteína/metabolismo , Humanos , Macrófagos/metabolismo , Oxirredução , Estresse Oxidativo
16.
NanoImpact ; 172020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32133426

RESUMO

Responsible implementation of engineered nanomaterials (ENMs) into commercial applications is an important societal issue, driving demand for new approaches for rapid and comprehensive evaluation of their bioactivity and safety. An essential part of any research focused on identifying potential hazards of ENMs is the appropriate selection of biological endpoints to evaluate. Herein, we use a tiered strategy employing both targeted biological assays and untargeted quantitative proteomics to elucidate the biological responses of human THP-1 derived macrophages across a library of metal/metal oxide ENMs, raised as priority ENMs for investigation by NIEHS's Nanomaterial Health Implications Research (NHIR) program. Our results show that quantitative cellular proteome profiles readily distinguish ENM types based on their cytotoxic potential according to induction of biological processes and pathways involved in the cellular antioxidant response, TCA cycle, oxidative stress, endoplasmic reticulum stress, and immune responses as major processes impacted. Interestingly, bioinformatics analysis of differentially expressed proteins also revealed new biological processes that were influenced by all ENMs independent of their cytotoxic potential. These included biological processes that were previously implicated as mechanisms cells employ as adaptive responses to low levels of oxidative stress, including cell adhesion, protein translation and protein targeting. Unsupervised clustering revealed the most striking proteome changes that differentiated ENM classes highlight a small subset of proteins involved in the oxidative stress response (HMOX1), protein chaperone functions (HS71B, DNJB1), and autophagy (SQSTM), providing a potential new panel of markers of ENM-induced cellular stress. To our knowledge, the results represent the most comprehensive profiling of the biological responses to a library of ENMs conducted using quantitative mass spectrometry-based proteomics. The results provide a basis to identify the patterns of a diverse set of cellular pathways and biological processes impacted by ENM exposure in an important immune cell type, laying the foundation for multivariate, pathway-level structure activity assessments of ENMs in the future.

17.
NanoImpact ; 182020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32190784

RESUMO

Micron scale cellulose materials are "generally regarded as safe" (GRAS) as binders and thickeners in food products. However, nanocellulose materials, which have unique properties that can improve food quality and safety, have not received US-Food and Drug Administration (FDA) approval as food ingredients. In vitro and in vivo toxicological studies of ingested nanocellulose revealed minimal cytotoxicity, and no subacute in vivo toxicity. However, ingested materials may modulate gut microbial populations, or alter aspects of intestinal function not elucidated by toxicity testing, which could have important health implications. Here, we report the results of studies conducted in a rat gavage model to assess the effects of ingested cellulose nanofibrils (CNF) on the fecal microbiome and metabolome, intestinal epithelial expression of cell junction genes, and ileal cytokine production. Feces, plasma, and ilea were collected from Wistar Han rats before and after five weeks of biweekly gavages with water or cream, with or without 1% CNF. CNF altered microbial diversity, and diminished specific species that produce short chain fatty acids, and that are associated with increased serum insulin and IgA production. CNF had few effects on the fecal metabolome, with significant changes in only ten metabolites of 366 measured. Exposure to CNF also altered expression of epithelial cell junction genes, and increased production of cytokines that modulate proliferation of CD8 T cells. These perturbations likely represent initiation of an adaptive immune response, however, no associated pathology was seen within the duration of the study. Additional studies are needed to better understand the health implications of these changes in long term.

18.
Toxicol Sci ; 95(2): 300-12, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17098817

RESUMO

The rapid growth in the use of in vitro methods for nanoparticle toxicity assessment has proceeded with limited consideration of the unique kinetics of these materials in solution. Particles in general and nanoparticles specifically, diffuse, settle, and agglomerate in cell culture media as a function of systemic and particle properties: media density and viscosity and particle size, shape, charge and density, for example. Cellular dose then is also a function of these factors as they determine the rate of transport of nanoparticles to cells in culture. Here we develop and apply the principles of dosimetry in vitro and outline an approach for simulation of nanoparticle particokinetics in cell culture systems. We illustrate that where equal mass concentrations (mug/ml) imply equal doses for dissimilar materials, the corresponding particle number or surface area concentration doses differ by orders of magnitude. More importantly, when rates of diffusional and gravitational particle delivery are accounted for, trends and magnitude of the cellular dose as a function of particle size and density differ significantly from those implied by "concentration" doses. For example, 15-nm silver nanoparticles appear approximately 4000 times more potent than micron-sized cadmium oxide particles on a cm(2)/ml media basis, but are only approximately 50 times more potent when differences in delivery to adherent cells are considered. We conclude that simple surrogates of dose can cause significant misinterpretation of response and uptake data for nanoparticles in vitro. Incorporating particokinetics and principles of dosimetry would significantly improve the basis for nanoparticle toxicity assessment, increasing the predictive power and scalability of such assays.


Assuntos
Nanopartículas/toxicidade , Células Cultivadas , Difusão , Relação Dose-Resposta a Droga , Gravitação , Modelos Biológicos , Nanopartículas/administração & dosagem , Nanopartículas/química , Tamanho da Partícula
19.
Biointerphases ; 11(4): 04B401, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27936809

RESUMO

Nanoparticles of various types are of increasing research and technological importance in biological and other applications. Difficulties in the production and delivery of nanoparticles with consistent and well defined properties appear in many forms and have a variety of causes. Among several issues are those associated with incomplete information about the history of particles involved in research studies, including the synthesis method, sample history after synthesis, including time and nature of storage, and the detailed nature of any sample processing or modification. In addition, the tendency of particles to change with time or environmental condition suggests that the time between analysis and application is important and some type of consistency or verification process can be important. The essential history of a set of particles can be identified as provenance information and tells the origin or source of a batch of nano-objects along with information related to handling and any changes that may have taken place since it was originated. A record of sample provenance information for a set of particles can play a useful role in identifying some of the sources and decreasing the extent of particle variability and the lack of reproducibility observed by many researchers.


Assuntos
Pesquisa Biomédica/métodos , Pesquisa Biomédica/normas , Fenômenos Químicos , Nanopartículas/química , Reprodutibilidade dos Testes
20.
ACS Nano ; 10(1): 524-38, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26700264

RESUMO

Engineered nanoparticles (ENPs) are increasingly utilized for commercial and medical applications; thus, understanding their potential adverse effects is an important societal issue. Herein, we investigated protein S-glutathionylation (SSG) as an underlying regulatory mechanism by which ENPs may alter macrophage innate immune functions, using a quantitative redox proteomics approach for site-specific measurement of SSG modifications. Three high-volume production ENPs (SiO2, Fe3O4, and CoO) were selected as representatives which induce low, moderate, and high propensity, respectively, to stimulate cellular reactive oxygen species (ROS) and disrupt macrophage function. The SSG modifications identified highlighted a broad set of redox sensitive proteins and specific Cys residues which correlated well with the overall level of cellular redox stress and impairment of macrophage phagocytic function (CoO > Fe3O4 ≫ SiO2). Moreover, our data revealed pathway-specific differences in susceptibility to SSG between ENPs which induce moderate versus high levels of ROS. Pathways regulating protein translation and protein stability indicative of ER stress responses and proteins involved in phagocytosis were among the most sensitive to SSG in response to ENPs that induce subcytoxic levels of redox stress. At higher levels of redox stress, the pattern of SSG modifications displayed reduced specificity and a broader set pathways involving classical stress responses and mitochondrial energetics (e.g., glycolysis) associated with apoptotic mechanisms. An important role for SSG in regulation of macrophage innate immune function was also confirmed by RNA silencing of glutaredoxin, a major enzyme which reverses SSG modifications. Our results provide unique insights into the protein signatures and pathways that serve as ROS sensors and may facilitate cellular adaption to ENPs, versus intracellular targets of ENP-induced oxidative stress that are linked to irreversible cell outcomes.


Assuntos
Glutationa/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Cobalto/química , Cobalto/farmacologia , Óxido Ferroso-Férrico/química , Óxido Ferroso-Férrico/farmacologia , Perfilação da Expressão Gênica , Glutarredoxinas/antagonistas & inibidores , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glicólise/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Nanopartículas/química , Oxirredução , Óxidos/química , Óxidos/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas/genética , Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química , Dióxido de Silício/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA