Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Ecol Appl ; 30(7): e02144, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32338806

RESUMO

Heterogeneity in quantity and quality of resources provided in the urban matrix may mitigate adverse effects of urbanization intensity on the structure of biotic communities. To assess this we quantified the spatial variation in butterfly richness and abundance along an impervious surface gradient using three measures of urban matrix quality: floral resource availability and origin (native vs. exotic plants), tree cover, and the occurrence of remnant habitat patches. Butterfly richness and abundance were surveyed in 100 cells (500 × 500 m), selected using a random-stratified sampling design, across a continuous gradient of imperviousness in Melbourne, Australia. Sampling occurred twice during the butterfly flight season. Occurrence data were analyzed using generalized linear models at local and mesoscales. Despite high sampling completeness, we did not detect 75% of species from the regional species pool in the urban area, suggesting that urbanization has caused a large proportion of the region's butterflies to become absent or extremely rare within Melbourne's metro-area. Those species that do remain are largely very generalist in their choice of larval host plants. Butterfly species richness and abundance declined with increasing impervious surface cover and, contrary to evidence for other taxa, there was no evidence that richness peaked at intermediate levels of urbanization. Declines in abundance appeared to be more noticeable when impervious surface cover exceeded 25%, while richness declined linearly with increasing impervious surface cover. We find evidence that the quality of the urban matrix (floral resources and remnant vegetation) influenced butterfly richness and abundance although the effects were small. Total butterfly abundance responded negatively to exotic floral abundance early in the sampling season and positively to total floral abundance later in the sampling season. Butterfly species richness increased with tree cover. Negative impacts of increased urbanization intensity on butterfly species richness and abundance may be mitigated to some extent by improving the quality of the urban matrix by enhancing tree cover and the provision of floral resources, with some evidence that native plants are more effective.


Assuntos
Borboletas , Animais , Austrália , Biodiversidade , Ecossistema , Plantas , Urbanização
2.
J Environ Qual ; 45(1): 215-23, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26828177

RESUMO

Soils in urban green spaces are an important carbon (C) store, but urban soils with a high carbon to nitrogen (C/N) ratio can also buffer N eutrophication from fertilizer use or atmospheric deposition. The influence of vegetation management practices on soil C cycling and C/N ratios in urban green spaces is largely unknown. In 2013, we collected replicate ( = 3) soil samples from tree canopy, tall grass, and short turf grass areas ( = 3) at four random plot locations ( = 4) established in 13 golf courses ( = 13). At each sample point, soil was separated into 0- to 0.1-, 0.1- to 0.2-, and 0.2- to 0.3-m depths (total = 1404). Linear mixed models investigated the relationships between soil properties, vegetation attributes, and green space age. Tree canopy soil was less compacted (1.07 g cm) than grassy areas (1.32 g cm). Similarly, tree canopy soil had mean C/N ratios of 17.2, as compared with between 14.2 and 15.3 in grassy areas. Soil properties in tree canopy areas were best explained by tree basal area and understory vegetation volume. Soil C/N increased with increasing understory vegetation, and the difference in soil C/N between tree canopy and short turf grass areas increased over time. The soil properties in tree canopy areas of urban green space mean they can increasingly buffer the localized use of N fertilizers and atmospheric N deposition. Managers of urban green spaces concerned about N pollution of groundwater and waterways could consider planting trees in suitable topographic locations and promoting understory vegetation and surface litter accumulation.


Assuntos
Carbono/análise , Nitrogênio/análise , Solo/química , Poaceae , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA