Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901898

RESUMO

Most breast cancer heritability is unexplained. We hypothesized that analysis of unrelated familial cases in a GWAS context could enable the identification of novel susceptibility loci. In order to examine the association of a haplotype with breast cancer risk, we performed a genome-wide haplotype association study using a sliding window analysis of window sizes 1-25 SNPs in 650 familial invasive breast cancer cases and 5021 controls. We identified five novel risk loci on 9p24.3 (OR 3.4; p 4.9 × 10-11), 11q22.3 (OR 2.4; p 5.2 × 10-9), 15q11.2 (OR 3.6; p 2.3 × 10-8), 16q24.1 (OR 3; p 3 × 10-8) and Xq21.31 (OR 3.3; p 1.7 × 10-8) and confirmed three well-known loci on 10q25.13, 11q13.3, and 16q12.1. In total, 1593 significant risk haplotypes and 39 risk SNPs were distributed on the eight loci. In comparison with unselected breast cancer cases from a previous study, the OR was increased in the familial analysis in all eight loci. Analyzing familial cancer cases and controls enabled the identification of novel breast cancer susceptibility loci.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Haplótipos , Predisposição Genética para Doença , Suécia , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles
2.
Mol Carcinog ; 61(3): 288-300, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34758156

RESUMO

To search for colorectal cancer (CRC) risk loci, Swedish samples were used for a genome-wide haplotype analysis. A logistic regression model was employed in 2663 CRC cases and 1642 controls in the discovery analysis. Three analyses were done, on all, familial-, and nonfamilial CRC samples and only results with odds ratio (OR) > 1 were analyzed. single nucleotide polymorphism (SNP) analysis did not generate any statistically significant results. Haplotype analysis suggested novel loci, on chromosome 2q36.1 (OR = 1.71, p value = 5.6924 × 10-8 ) in all CRC samples, chromosome 1q43 (OR = 4.04 p value = 3.24 × 10-8 ) in familial CRC samples, and two hits in nonfamilial CRC samples, chromosomes 2q36.1 (OR = 1.71 p value = 5.69 × 10-8 ) and 3p24.3 (OR = 1.62 p value = 6.21 × 10-9 ). Moreover, one locus on chromosome 20q13.33 was suggested in analyses of all samples, and five more novel loci were suggested on chromosomes 10q25.3, 15q,22.31, 17p11.2, 1p34.2, and 3q24. The haplotypes from the analysis of all samples were replicated in a second study of CRC cases and controls from the same part of Sweden. In summary, using haplotype analysis in Swedish CRC samples, the best hits were novel loci and the locus on chromosomes 2q36.1 and 20q13.33 suggested in the analysis of all samples were confirmed in a second cohort. The ORs were often higher than ORs from published genome-wide association study (GWAS). The study suggested it was possible that a risk locus could involve more than one gene, and that haplotypes could give information on the gene or genes possibly involved in the risk at specific locus.


Assuntos
Neoplasias Colorretais , Estudo de Associação Genômica Ampla , Estudos de Casos e Controles , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Polimorfismo de Nucleotídeo Único , Suécia/epidemiologia
3.
Int J Cancer ; 149(3): 627-634, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33729574

RESUMO

Identifying new candidate colorectal cancer (CRC) genes and mutations are important for clinical cancer prevention as well as in cancer care. Genetic counseling is already implemented for known high-risk variants; however, the majority of CRC are of unknown causes. In our study, 110 CRC patients in 55 Swedish families with a strong history of CRC but unknown genetic causes were analyzed with the aim of identifying novel candidate CRC predisposing genes. Exome sequencing was used to identify rare and high-impact variants enriched in the families. No clear pathogenic variants were found in known CRC predisposing genes; however, potential pathogenic variants in novel CRC predisposing genes were identified. Over 3000 variants with minor allele frequency (MAF) <0.01 and Combined Annotation Dependent Depletion (CADD) > 20 were seen aggregating in the CRC families. Of those, 27 variants with MAF < 0.001 and CADD>25 were considered high-risk mutations. Interestingly, more than half of the high-risk variants were detected in three families, suggesting cumulating contribution of several variants to CRC. In summary, our study shows that despite a strong history of CRC within families, identifying pathogenic variants is challenging. In a small number of families, few rare mutations were shared by affected family members. This could indicate that in the absence of known CRC predisposing genes, a cumulating contribution of mutations leads to CRC observed in these families.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Exoma , Predisposição Genética para Doença , Mutação , Recidiva Local de Neoplasia/genética , Oncogenes , Idoso , Estudos de Coortes , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/patologia , Família , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/epidemiologia , Recidiva Local de Neoplasia/patologia , Prognóstico , Suécia/epidemiologia , Sequenciamento do Exoma
4.
J Pathol ; 250(2): 183-194, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31621921

RESUMO

The genetics underlying thyroid cancer dedifferentiation is only partly understood and has not yet been characterised using comprehensive pan-genomic analyses. We investigated a unique case with synchronous follicular thyroid carcinoma (FTC), poorly differentiated thyroid carcinoma (PDTC), and anaplastic thyroid carcinoma (ATC), as well as regional lymph node metastases from the PDTC and ATC from a single patient using whole-genome sequencing (WGS). The FTC displayed mutations in CALR, RB1, and MSH2, and the PDTC exhibited mutations in TP53, DROSHA, APC, TERT, and additional DNA repair genes - associated with an immense increase in sub-clonal somatic mutations. All components displayed an overrepresentation of C>T transitions with associated microsatellite instability (MSI) in the PDTC and ATC, with borderline MSI in the FTC. Clonality analyses pinpointed a shared ancestral clone enriched for mutations in TP53-associated regulation of DNA repair and identified important sub-clones for each tumour component already present in the corresponding preceding lesion. This genomic characterisation of the natural progression of thyroid cancer reveals several novel genes of interest for future studies. Moreover, the findings support the theory of a stepwise dedifferentiation process and suggest that defects in DNA repair could play an important role in the clonal evolution of thyroid cancer. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Reparo do DNA/genética , Neoplasias Primárias Múltiplas/genética , Carcinoma Anaplásico da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Idoso , Desdiferenciação Celular/genética , Variações do Número de Cópias de DNA , Análise Mutacional de DNA/métodos , DNA de Neoplasias/genética , Progressão da Doença , Feminino , Frequência do Gene , Humanos , Metástase Linfática , Instabilidade de Microssatélites , Mutação , Neoplasias Primárias Múltiplas/patologia , Carcinoma Anaplásico da Tireoide/patologia , Carcinoma Anaplásico da Tireoide/secundário , Neoplasias da Glândula Tireoide/patologia , Sequenciamento Completo do Genoma/métodos
5.
Hered Cancer Clin Pract ; 19(1): 23, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827643

RESUMO

BACKGROUND: We have previously reported a family with a suspected autosomal dominant rectal and gastric cancer syndrome without any obvious causative genetic variant. Here, we focused the study on a potentially isolated rectal cancer syndrome in this family. METHODS: We included seven family members (six obligate carriers). Whole-exome sequencing and whole-genome sequencing data were analyzed and filtered for shared coding and splicing sequence and structural variants among the affected individuals. RESULTS: When considering family members with rectal cancer or advanced adenomas as affected, we found six new potentially cancer-associated variants in the genes CENPB, ZBTB20, CLINK, LRRC26, TRPM1, and NPEPL1. All variants were missense variants and none of the genes have previously been linked to inherited rectal cancer. No structural variant was found. CONCLUSION: By massive parallel sequencing in a family suspected of carrying a highly penetrant rectal cancer predisposing genetic variant, we found six genetic missense variants with a potential connection to the rectal cancer in this family. One of them could be a high-risk genetic variant, or one or more of them could be low risk variants. The p.(Glu438Lys) variant in the CENPB gene was found to be of particular interest. The CENPB protein binds DNA and helps form centromeres during mitosis. It is involved in the WNT signaling pathway, which is critical for colorectal cancer development and its role in inherited rectal cancer needs to be further examined.

6.
BMC Bioinformatics ; 21(1): 128, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245405

RESUMO

BACKGROUND: DNA damage accumulates over the course of cancer development. The often-substantial amount of somatic mutations in cancer poses a challenge to traditional methods to characterize tumors based on driver mutations. However, advances in machine learning technology can take advantage of this substantial amount of data. RESULTS: We developed a command line interface python package, pyCancerSig, to perform sample profiling by integrating single nucleotide variation (SNV), structural variation (SV) and microsatellite instability (MSI) profiles into a unified profile. It also provides a command to decipher underlying cancer processes, employing an unsupervised learning technique, Non-negative Matrix Factorization, and a command to visualize the results. The package accepts common standard file formats (vcf, bam). The program was evaluated using a cohort of breast- and colorectal cancer from The Cancer Genome Atlas project (TCGA). The result showed that by integrating multiple mutations modes, the tool can correctly identify cases with known clear mutational signatures and can strengthen signatures in cases with unclear signal from an SNV-only profile. The software package is available at https://github.com/jessada/pyCancerSig. CONCLUSIONS: pyCancerSig has demonstrated its capability in identifying known and unknown cancer processes, and at the same time, illuminates the association within and between the mutation modes.


Assuntos
Mutação , Neoplasias/genética , Software , Neoplasias da Mama/genética , Estudos de Coortes , Neoplasias Colorretais/genética , Feminino , Variação Genética , Genoma Humano , Humanos , Aprendizado de Máquina , Instabilidade de Microssatélites , Sequenciamento Completo do Genoma
7.
Genes Chromosomes Cancer ; 58(11): 775-782, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31334572

RESUMO

Colorectal cancer (CRC), prostate cancer (PrC), and gastric cancer (GC) are common worldwide, and the incidence is to a certain extent dependent on genetics. We have recently shown that in families with more than one case of CRC, the risk of other malignancies is increased. We therefore suggested the presence of not yet described CRC syndromes. In this study, we have searched for genetic susceptibility loci for potential cancer syndromes involving CRC combined with PrC and/or GC. We have performed SNP (single-nucleotide polymorphism)-based linkage analyses in 45 families with CRC, PrC, and GC. In the regions with suggested linkage, we performed exome and association haplotype analyses. Five loci generated a high logarithm of odds (HLOD) score >2, suggestive of linkage, in chromosome bands 1q31-32, 1q24-25, 6q25-26, 18p11-q11, and Xp11. Exome analysis detected no potential pathogenic sequence variants. The haplotype association study showed that one of the top five haplotypes with the lowest P value in the chromosome band 6q25 interestingly was found in the family which contributed the most to the increased HLOD at that locus. This study supports a suggested hereditary cancer syndrome involving CRC and PrC and indicates a location at 6q25. The impact of this locus needs to be confirmed in additional studies.


Assuntos
Predisposição Genética para Doença/genética , Síndromes Neoplásicas Hereditárias/genética , Neoplasias Colorretais/genética , Família , Feminino , Ligação Genética/genética , Loci Gênicos , Testes Genéticos/métodos , Estudo de Associação Genômica Ampla , Haplótipos/genética , Humanos , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Neoplasias da Próstata/genética , Fatores de Risco , Neoplasias Gástricas/genética , Sequenciamento do Exoma/métodos
8.
BMC Genet ; 17: 41, 2016 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-26872740

RESUMO

BACKGROUND: Heritable factors are well known to increase the risk of cancer in families. Known susceptibility genes account for a small proportion of all colorectal cancer cases. The aim of this study was to identify the genetic background in a family suggested to segregate a dominant cancer syndrome with a high risk of rectal- and gastric cancer. We performed whole exome sequencing in three family members, 2 with rectal cancer and 1 with gastric cancer and followed it up in additional family members, other patients and controls. RESULTS: We identified 12 novel non-synonymous single nucleotide variants, which were shared among 5 affected members of this family. The mutations were found in 12 different genes; DZIP1L, PCOLCE2, IGSF10, SUCNR1, OR13C8, EPB41L4B, SEC16A, NOTCH1, TAS2R7, SF3A1, GAL3ST1, and TRIOBP. None of the mutations was suggested as a high penetrant mutation. It was not possible to completely rule out any of the mutations as contributing to disease, although seven were more unlikely than the others. Neither did we rule out the effect of all thousands of intronic, intergenic and synonymous variants shared between the three persons used for exome sequencing. CONCLUSIONS: We propose this family, suggested to segregate dominant disease, could be an example of complex inheritance.


Assuntos
Exoma , Neoplasias Retais/genética , Neoplasias Gástricas/genética , Adulto , Predisposição Genética para Doença , Humanos , Escore Lod , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
9.
Eur J Cancer Prev ; 32(2): 113-118, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36134613

RESUMO

OBJECTIVE: Lynch syndrome is caused by germline mutations in the mismatch repair (MMR) genes, such as the PMS2 gene, and is characterised by a familial accumulation of colorectal cancer. The penetrance of cancer in PMS2 carriers is still not fully elucidated as a colorectal cancer risk has been shown to vary between PMS2 carriers, suggesting the presence of risk modifiers. METHODS: Whole exome sequencing was performed in a Swedish family carrying a PMS2 missense mutation [c.2113G>A, p.(Glu705Lys)]. Thirteen genetic sequence variants were further selected and analysed in a case-control study (724 cases and 711 controls). RESULTS: The most interesting variant was an 18 bp deletion in gene BAG1. BAG1 has been linked to colorectal tumour progression with poor prognosis and is thought to promote colorectal tumour cell survival through increased NF-κB activity. CONCLUSIONS: We conclude the genetic architecture behind the incomplete penetrance of PMS2 is complicated and must be assessed in a genome wide manner using large families and multifactorial analysis.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/metabolismo , Sequenciamento do Exoma , Penetrância , Suécia/epidemiologia , Estudos de Casos e Controles , Mutação , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Reparo de Erro de Pareamento de DNA , Proteína 1 Homóloga a MutL/genética
10.
Cancers (Basel) ; 14(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35267517

RESUMO

(1) Background: The heritability of breast cancer is partly explained but much of the genetic contribution remains to be identified. Haplotypes are often used as markers of ethnicity as they are preserved through generations. We have previously demonstrated that haplotype analysis, in addition to standard SNP association studies, could give novel and more detailed information on genetic cancer susceptibility. (2) Methods: In order to examine the association of a SNP or a haplotype to breast cancer risk, we performed a genome wide haplotype association study, using sliding window analysis of window sizes 1−25 and 50 SNPs, in 3200 Swedish breast cancer cases and 5021 controls. (3) Results: We identified a novel breast cancer susceptibility locus in 8p21.1 (OR 2.08; p 3.92 × 10−8), confirmed three known loci in 10q26.13, 11q13.3, 16q12.1-2 and further identified novel subloci within these three loci. Altogether 76 risk SNPs, 3302 risk haplotypes of window size 2−25 and 113 risk haplotypes of window size 50 at p < 5 × 10−8 on chromosomes 8, 10, 11 and 16 were identified. In the known loci haplotype analysis reached an OR of 1.48 in overall breast cancer and in familial cases OR 1.68. (4) Conclusions: Analyzing haplotypes, rather than single variants, could detect novel susceptibility loci even in small study populations but the method requires a fairly homogenous study population.

11.
Sci Rep ; 11(1): 14737, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282249

RESUMO

Identifying genetic cancer risk factors will lead to improved genetic counseling, cancer prevention and cancer care. Analyzing families with a strong history of breast cancer (BC) has been a successful method to identify genes that contribute to the disease. This has led to discoveries of high-risk genes like the BRCA-genes. Nevertheless, many BC incidences are of unknown causes. In this study, exome sequencing on 59 BC patients from 24 Swedish families with a strong history of BC was performed to identify variants in known and novel BC predisposing genes. First, we screened known BC genes and identified two pathogenic variants in the BRIP1 and PALB2 genes. Secondly, to identify novel BC genes, rare and high impact variants and segregating in families were analyzed to identify 544 variants in novel BC candidate genes. Of those, 22 variants were defined as high-risk variants. Several interesting genes, either previously linked with BC or in pathways that when flawed could contribute to BC, were among the detected genes. The strongest candidates identified are the FANCM gene, involved in DNA double-strand break repair, and the RAD54L gene, involved in DNA recombination. Our study shows identifying pathogenic variants is challenging despite a strong family history of BC. Several interesting candidates were observed here that need to be further studied.


Assuntos
Neoplasias da Mama/genética , Genes Neoplásicos , Mutação em Linhagem Germinativa , Adulto , Neoplasias da Mama/epidemiologia , Códon sem Sentido , DNA Helicases/genética , Análise Mutacional de DNA , Família , Feminino , Mutação com Ganho de Função , Predisposição Genética para Doença , Humanos , Pessoa de Meia-Idade , Linhagem , Fatores de Risco , Suécia/epidemiologia , Sequenciamento do Exoma
12.
Sci Rep ; 11(1): 14763, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285278

RESUMO

The risk of breast cancer associated with CHEK2:c.1100delC is 2-threefold but higher in carriers with a family history of breast cancer than without, suggesting that other genetic loci in combination with CHEK2:c.1100delC confer an increased risk in a polygenic model. Part of the excess familial risk has been associated with common low-penetrance variants. This study aimed to identify genetic loci that modify CHEK2:c.1100delC-associated breast cancer risk by searching for candidate risk alleles that are overrepresented in CHEK2:c.1100delC carriers with breast cancer compared with controls. We performed whole-exome sequencing in 28 breast cancer cases with germline CHEK2:c.1100delC, 28 familial breast cancer cases and 70 controls. Candidate alleles were selected for validation in larger cohorts. One recessive synonymous variant, rs16897117, was suggested, but no overrepresentation of homozygous CHEK2:c.1100delC carriers was found in the following validation. Furthermore, 11 non-synonymous candidate alleles were suggested for further testing, but no significant difference in allele frequency could be detected in the validation in CHEK2:c.1100delC cases compared with familial breast cancer, sporadic breast cancer and controls. With this method, we found no support for a CHEK2:c.1100delC-specific genetic modifier. Further studies of CHEK2:c.1100delC genetic modifiers are warranted to improve risk assessment in clinical practice.


Assuntos
Neoplasias da Mama/genética , Quinase do Ponto de Checagem 2/genética , Sequenciamento do Exoma/métodos , Deleção de Sequência , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Herança Multifatorial
13.
Mol Genet Genomic Med ; 7(5): e605, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30809968

RESUMO

BACKGROUND: Colorectal cancer (CRC) cases with an age of onset <40 years suggests a germline genetic cause. In total, 51 simplex cases were included to test the hypothesis of CRC as a mendelian trait caused by either heterozygous autosomal dominant or bi-allelic autosomal recessive pathogenic variants. METHODS: The cohort was whole exome sequenced (WES) at 100× coverage. Both a dominant- and recessive model were used for searching predisposing genetic factors. In addition, we assayed recessive variants of potential moderate risk that were enriched in our young-onset CRC cohort. Variants were filtered using a candidate cancer gene list or by selecting variants more likely to be pathogenic based on variant type (e.g., loss-of-function) or allele frequency. RESULTS: We identified one pathogenic variant in PTEN in a patient subsequently confirmed to have a hereditary hamartoma tumor syndrome (Cowden syndrome) and one patient with a pathogenic heterozygous variant in PMS2 that was originally not identified by WES due to low quality reads resulting from pseudogenes. In addition, we identified three heterozygous candidate missense variants in known cancer susceptibility genes (BMPR1A, BRIP1, and SRC), three truncating variants in possibly novel cancer genes (CLSPN, SEC24B, SSH2) and four candidate missense variants in ACACA, NR2C2, INPP4A, and DIDO1. We also identify five possible autosomal recessive candidate genes: ATP10B, PKHD1, UGGT2, MYH13, TFF3. CONCLUSION: Two clear pathogenic variants were identified in patients that had not been identified clinically. Thus, the chance of detecting a hereditary cancer syndrome in patients with CRC at young age but without family history is 2/51 (4%) and therefore the clinical benefit of genetic testing in this patient group is low. Of note, using stringent filtering, we have identified a total of ten candidate heterozygous variants and five possibly biallelic autosomal recessive candidate genes that warrant further study.


Assuntos
Neoplasias Colorretais/genética , Exoma , Mutação , Adulto , Idade de Início , Neoplasias Colorretais/patologia , Feminino , Loci Gênicos , Humanos , Masculino
14.
Eur J Hum Genet ; 27(8): 1286-1295, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30952955

RESUMO

Colorectal cancer (CRC) is one of the major cancer types in the western world including Sweden. However, known genetic risk factors could only explain a limited part of heritability of the disease. Moreover, colon and rectal cancers are habitually discussed as one entity, colorectal cancer, although different carcinogenesis has been recognized. A genome-wide linkage scan in 32 colon- and 56 rectal cancer families from Sweden was performed based on 475 non-FAP/HNPCC patients genotyped using SNP arrays. A maximum HLOD of 2.50 at locus 6p21.1-p12.1 and a HLOD of 2.56 at 18p11.2 was obtained for colon and rectal cancer families, respectively. Exome sequencing over the regions of interest in 12 patients from six families identified 22 and 25 candidate risk variants for colon and rectal cancer, respectively. Haplotype association analysis in the two regions was carried out between additional 477 familial CRC cases and 4780 controls and suggested candidate haplotypes possibly associated with CRC risk. This study suggested two new linkage regions for colon cancer and rectal cancer with candidate predisposing variants. Further studies are required to elucidate the pathogenic mechanism of these regions and to pinpoint the causative genes.


Assuntos
Cromossomos Humanos Par 18/genética , Cromossomos Humanos Par 6/genética , Neoplasias do Colo/genética , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Neoplasias Retais/genética , Idoso , Mapeamento Cromossômico , Neoplasias do Colo/diagnóstico , Saúde da Família , Feminino , Estudo de Associação Genômica Ampla/métodos , Genótipo , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Neoplasias Retais/diagnóstico , Suécia
15.
Oncotarget ; 9(13): 11170-11179, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29541405

RESUMO

Highly penetrant cancer syndromes account for less than 5% of all cases with familial colorectal cancer (CRC), and other genetic contribution explains the majority of the genetic contribution to CRC. A CRC susceptibility locus on chromosome 9q has been suggested. In this study, families where risk of CRC was linked to the region, were used to search for predisposing mutations in all genes in the region. No disease-causing mutation was found. Next, haplotype association studies were performed in the region, comparing Swedish CRC cases (2664) and controls (4782). Two overlapping haplotypes were suggested. One 10-SNP haplotype was indicated in familial CRC (OR 1.4, p = 0.00005) and one 25-SNP haplotype was indicated in sporadic CRC (OR 2.2, p = 0.0000012). The allele frequencies of the 10-SNP and the 25-SNP haplotypes were 13.7% and 2.5% respectively and both included one RNA, RP11-332M4.1 and RP11-l80l4.2, in the non-overlapping regions. The sporadic 25-SNP haplotype could not be studied further, but the familial 10-SNP haplotype was analyzed in 61 additional CRC families, and 6 of them were informative for all markers and had the risk haplotype. Targeted sequencing of the 10-SNP region in the linked families identified one variant in RP11-332M4.1, suggestive to confer the increased CRC risk on this haplotype. Our results support the presence of two loci at 9q22.32, each with one RNA as the putative cause of increased CRC risk. These RNAs could exert their effect through the same, or different, genes/pathways, possibly through the regulation of neighboring genes, such as PTCH1, FANCC, DKFZP434H0512, ERCC6L2 or the processed transcript LINC00046.

16.
Oncotarget ; 8(66): 110300-110310, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29299148

RESUMO

A germline mutation in cancer predisposing genes is known to increase the risk of more than one tumor type. In order to find loci associated with many types of cancer, a genome-wide association study (GWAS) was conducted, and 3,555 Swedish cancer cases and 15,581 controls were analyzed for 226,883 SNPs. The study used haplotype analysis instead of single SNP analysis in order to find putative founder effects. Haplotype association studies identified seven risk loci associated with cancer risk, on chromosomes 1, 7, 11, 14, 16, 17 and 21. Four of the haplotypes, on chromosomes 7, 14, 16 and 17, were confirmed in Swedish familial cancer cases. It was possible to perform exome sequencing in one patient for each of those four loci. No clear disease-causing exonic mutation was found in any of the four loci. Some of the candidate loci hold several cancer genes, suggesting that the risk associated with one locus could involve more than one gene associated with cancer risk. In summary, this study identified seven novel candidate loci associated with cancer risk. It was also suggested that cancer risk at one locus could depend on multiple contributing risk mutations/genes.

17.
Sci Rep ; 7(1): 723, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28389662

RESUMO

Plasmodium falciparum genome has 81% A+T content. This nucleotide bias leads to extreme codon usage bias and culminates in frequent insertion of asparagine homorepeats in the proteome. Using recodonized GFP sequences, we show that codons decoded via G:U wobble pairing are suboptimal codons that are negatively associated to protein translation efficiency. Despite this, one third of all codons in the genome are GU wobble codons, suggesting that codon usage in P. falciparum has not been driven to maximize translation efficiency, but may have evolved as translational regulatory mechanism. Particularly, asparagine homorepeats are generally encoded by locally clustered GU wobble AAT codons, we demonstrated that this GU wobble-rich codon context is the determining factor that causes reduction of protein level. Moreover, insertion of clustered AAT codons also causes destabilization of the transcripts. Interestingly, more frequent asparagine homorepeats insertion is seen in single-exon genes, suggesting transcripts of these genes may have been programmed for rapid mRNA decay to compensate for the inefficiency of mRNA surveillance regulation on intronless genes. To our knowledge, this is the first study that addresses P. falciparum codon usage in vitro and provides new insights on translational regulation and genome evolution of this parasite.


Assuntos
Anticódon , Pareamento de Bases , Códon , Plasmodium falciparum/genética , Biossíntese de Proteínas , Asparagina/genética , Composição de Bases , Evolução Molecular , Éxons , Regulação da Expressão Gênica , Genes Reporter , Sequências Repetitivas de Ácido Nucleico , Seleção Genética
18.
Eur J Hum Genet ; 25(11): 1253-1260, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28832569

RESUMO

Here we describe the SweGen data set, a comprehensive map of genetic variation in the Swedish population. These data represent a basic resource for clinical genetics laboratories as well as for sequencing-based association studies by providing information on genetic variant frequencies in a cohort that is well matched to national patient cohorts. To select samples for this study, we first examined the genetic structure of the Swedish population using high-density SNP-array data from a nation-wide cohort of over 10 000 Swedish-born individuals included in the Swedish Twin Registry. A total of 1000 individuals, reflecting a cross-section of the population and capturing the main genetic structure, were selected for whole-genome sequencing. Analysis pipelines were developed for automated alignment, variant calling and quality control of the sequencing data. This resulted in a genome-wide collection of aggregated variant frequencies in the Swedish population that we have made available to the scientific community through the website https://swefreq.nbis.se. A total of 29.2 million single-nucleotide variants and 3.8 million indels were detected in the 1000 samples, with 9.9 million of these variants not present in current databases. Each sample contributed with an average of 7199 individual-specific variants. In addition, an average of 8645 larger structural variants (SVs) were detected per individual, and we demonstrate that the population frequencies of these SVs can be used for efficient filtering analyses. Finally, our results show that the genetic diversity within Sweden is substantial compared with the diversity among continental European populations, underscoring the relevance of establishing a local reference data set.


Assuntos
Genoma Humano , Polimorfismo de Nucleotídeo Único , Sistema de Registros , Conjuntos de Dados como Assunto , Estudo de Associação Genômica Ampla , Humanos , Suécia , Gêmeos/genética
19.
Oncotarget ; 8(61): 102769-102782, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29262523

RESUMO

Most non-BRCA1/2 breast cancer families have no identified genetic cause. We used linkage and haplotype analyses in familial and sporadic breast cancer cases to identify a susceptibility locus on chromosome 6q. Two independent genome-wide linkage analysis studies suggested a 3 Mb locus on chromosome 6q and two unrelated Swedish families with a LOD >2 together seemed to share a haplotype in 6q14.1. We hypothesized that this region harbored a rare high-risk founder allele contributing to breast cancer in these two families. Sequencing of DNA and RNA from the two families did not detect any pathogenic mutations. Finally, 29 SNPs in the region were analyzed in 44,214 cases and 43,532 controls from BCAC, and the original haplotypes in the two families were suggested as low-risk alleles for European and Swedish women specifically. There was also some support for one additional independent moderate-risk allele in Swedish familial samples. The results were consistent with our previous findings in familial breast cancer and supported a breast cancer susceptibility locus at 6q14.1 around the PHIP gene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA