Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 160(9)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38450733

RESUMO

We review the GPAW open-source Python package for electronic structure calculations. GPAW is based on the projector-augmented wave method and can solve the self-consistent density functional theory (DFT) equations using three different wave-function representations, namely real-space grids, plane waves, and numerical atomic orbitals. The three representations are complementary and mutually independent and can be connected by transformations via the real-space grid. This multi-basis feature renders GPAW highly versatile and unique among similar codes. By virtue of its modular structure, the GPAW code constitutes an ideal platform for the implementation of new features and methodologies. Moreover, it is well integrated with the Atomic Simulation Environment (ASE), providing a flexible and dynamic user interface. In addition to ground-state DFT calculations, GPAW supports many-body GW band structures, optical excitations from the Bethe-Salpeter Equation, variational calculations of excited states in molecules and solids via direct optimization, and real-time propagation of the Kohn-Sham equations within time-dependent DFT. A range of more advanced methods to describe magnetic excitations and non-collinear magnetism in solids are also now available. In addition, GPAW can calculate non-linear optical tensors of solids, charged crystal point defects, and much more. Recently, support for graphics processing unit (GPU) acceleration has been achieved with minor modifications to the GPAW code thanks to the CuPy library. We end the review with an outlook, describing some future plans for GPAW.

2.
Nano Lett ; 18(2): 1460-1465, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29377700

RESUMO

Electronic excitations in van der Waals heterostructures can have interlayer or intralayer character depending on the spatial localization of the involved charges (electrons and holes). In the case of neutral electron-hole pairs (excitons), both types of excitations have been explored theoretically and experimentally. In contrast, studies of charged trions have so far been limited to the intralayer type. Here we investigate the complete set of interlayer excitations in a MoS2/WS2 heterostructure using a novel ab initio method, which allows for a consistent treatment of both excitons and trions at the same theoretical footing. Our calculations predict the existence of bound interlayer trions below the neutral interlayer excitons. We obtain binding energies of 18/28 meV for the positive/negative interlayer trions with both electrons/holes located on the same layer. In contrast, a negligible binding energy is found for trions which have the two equally charged particles on different layers. Our results advance the understanding of electronic excitations in doped van der Waals heterostructures and their effect on the optical properties.

3.
Nano Lett ; 18(5): 2984-2989, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29665688

RESUMO

Vertically stacked two-dimensional materials form an ideal platform for controlling and exploiting light-matter interactions at the nanoscale. As a unique feature, these materials host electronic excitations of both intra- and interlayer type with distinctly different properties. In this Letter, using first-principles many-body calculations, we provide a detailed picture of the most prominent excitons in bilayer MoS2, a prototypical van der Waals material. By applying an electric field perpendicular to the bilayer, we explore the evolution of the excitonic states as the band alignment is varied from perfect line-up to staggered (Type II) alignment. For moderate field strengths, the lowest exciton has intralayer character and is almost independent of the electric field. However, we find higher lying excitons that have interlayer character. They can be described as linear combinations of the intralayer B exciton and optically dark charge transfer excitons, and interestingly, these mixed interlayer excitons have strong optical amplitude and can be easily tuned by the electric field. The first-principles results can be accurately reproduced by a simple excitonic model Hamiltonian that can be straightforwardly generalized to more complex van der Waals materials.

4.
Nano Lett ; 18(11): 7275-7281, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30339398

RESUMO

Janus transition metal dichalcogenides with a built-in structural cross-plane (cp) asymmetry have recently emerged as a new class of two-dimensional materials with a large cp dipole. Using first-principles calculations, and a tailored transport method, we demonstrate that stacking graphene and MoSSe Janus structures result in record high homogeneous doping of graphene and abrupt, atomically thin, cross-plane pn-junctions. We show how graphene in contrast to metals can act as electrodes to Janus stacks without screening the cp dipole and predict a large photocurrent response dominated by a cp transport channel in a few-layer stacked device. The photocurrent is above that of a corresponding thin-film silicon device illustrating the great potential of Janus stacks, for example, in photovoltaic devices.

5.
J Chem Phys ; 148(24): 241735, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29960358

RESUMO

Polymer solar cells admit numerous potential advantages including low energy payback time and scalable high-speed manufacturing, but the power conversion efficiency is currently lower than for their inorganic counterparts. In a Phenyl-C_61-Butyric-Acid-Methyl-Ester (PCBM)-based blended polymer solar cell, the optical gap of the polymer and the energetic alignment of the lowest unoccupied molecular orbital (LUMO) of the polymer and the PCBM are crucial for the device efficiency. Searching for new and better materials for polymer solar cells is a computationally costly affair using density functional theory (DFT) calculations. In this work, we propose a screening procedure using a simple string representation for a promising class of donor-acceptor polymers in conjunction with a grammar variational autoencoder. The model is trained on a dataset of 3989 monomers obtained from DFT calculations and is able to predict LUMO and the lowest optical transition energy for unseen molecules with mean absolute errors of 43 and 74 meV, respectively, without knowledge of the atomic positions. We demonstrate the merit of the model for generating new molecules with the desired LUMO and optical gap energies which increases the chance of finding suitable polymers by more than a factor of five in comparison to the randomised search used in gathering the training set.

6.
Angew Chem Int Ed Engl ; 54(48): 14304-7, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26444184

RESUMO

Tuning charge transport at the single-molecule level plays a crucial role in the construction of molecular electronic devices. Introduced herein is a promising and operationally simple approach to tune two distinct charge-transport pathways through a cruciform molecule. Upon in situ cleavage of triisopropylsilyl groups, complete conversion from one junction type to another is achieved with a conductance increase by more than one order of magnitude, and it is consistent with predictions from ab initio transport calculations. Although molecules are well known to conduct through different orbitals (either HOMO or LUMO), the present study represents the first experimental realization of switching between HOMO- and LUMO-dominated transport within the same molecule.

7.
ACS Nano ; 18(6): 4746-4755, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38290223

RESUMO

Intercalation (ic) of metal atoms into the van der Waals (vdW) gap of layered materials constitutes a facile strategy to create materials whose properties can be tuned via the concentration of the intercalated atoms. Here we perform systematic density functional theory calculations to explore various properties of an emergent class of crystalline 2D materials (ic-2D materials) comprising vdW homobilayers with native metal atoms on a sublattice of intercalation sites. From an initial set of 1348 ic-2D materials, generated from 77 vdW homobilayers, we find 95 structures with good thermodynamic stability (formation energy within 200 meV/atom of the convex hull). A significant fraction of the semiconducting host materials are found to undergo an insulator to metal transition upon self-intercalation, with only PdS2, PdSe2, and GeS2 maintaining a finite electronic gap. In five cases, self-intercalation introduces magnetism. In general, self-intercalation is found to promote metallicity and enhance the chemical reactivity on the basal plane. Based on the calculated H binding energy, we find that self-intercalated SnS2 and Hf3Te2 are promising candidates for hydrogen evolution catalysis. All the stable ic-2D structures and their calculated properties can be explored in the open C2DB database.

8.
J Chem Theory Comput ; 20(2): 926-936, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38189259

RESUMO

The emerging field of strongly coupled light-matter systems has drawn significant attention in recent years because of the prospect of altering both the physical and chemical properties of molecules and materials. Because this emerging field draws on ideas from both condensed-matter physics and quantum optics, it has attracted the attention of theoreticians from both fields. While the former often employ accurate descriptions of the electronic structure of the matter, the description of the electromagnetic environment is often oversimplified. In contrast, the latter often employs sophisticated descriptions of the electromagnetic environment while using oversimplified few-level approximations of the electronic structure. Both approaches are problematic because the oversimplified descriptions of the electronic system are incapable of describing effects such as light-induced structural changes in the electronic system, while the oversimplified descriptions of the electromagnetic environments can lead to unphysical predictions because the light-matter interactions strengths are misrepresented. In this work, we overcome these shortcomings and present the first method which can quantitatively describe both the electronic system and general electromagnetic environments from first principles. We realize this by combining macroscopic QED (MQED) with Quantum Electrodynamical Density-Functional Theory. To exemplify this approach, we consider the example of an absorbing spherical cavity and study the impact of different parameters of both the environment and the electronic system on the transition from weak-to-strong coupling for different aromatic molecules. As part of this work, we also provide an easy-to-use tool to calculate the cavity coupling strengths for simple cavity setups. Our work is a significant step toward parameter-free ab initio calculations for strongly coupled quantum light-matter systems and will help bridge the gap between theoretical methods and experiments in the field.

9.
Adv Mater ; 36(29): e2401838, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38748700

RESUMO

The advent of 2D ferroelectrics, characterized by their spontaneous polarization states in layer-by-layer domains without the limitation of a finite size effect, brings enormous promise for applications in integrated optoelectronic devices. Comparing with semiconductor/insulator devices, ferroelectric devices show natural advantages such as non-volatility, low energy consumption and high response speed. Several 2D ferroelectric materials have been reported, however, the device implementation particularly for optoelectronic application remains largely hypothetical. Here, the linear electro-optic effect in 2D ferroelectrics is discovered and electrically tunable 2D ferroelectric metalens is demonstrated. The linear electric-field modulation of light is verified in 2D ferroelectric CuInP2S6. The in-plane phase retardation can be continuously tuned by a transverse DC electric field, yielding an effective electro-optic coefficient rc of 20.28 pm V-1. The CuInP2S6 crystal exhibits birefringence with the fast axis oriented along its (010) plane. The 2D ferroelectric Fresnel metalens shows efficacious focusing ability with an electrical modulation efficiency of the focusing exceeding 34%. The theoretical analysis uncovers the origin of the birefringence and unveil its ultralow light absorption across a wide wavelength range in this non-excitonic system. The van der Waals ferroelectrics enable room-temperature electrical modulation of light and offer the freedom of heterogeneous integration with silicon and another material system for highly compact and tunable photonics and metaoptics.

10.
ACS Nano ; 17(21): 21105-21115, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37889165

RESUMO

We employ a first-principles computational workflow to screen for optically accessible, high-spin point defects in wide band gap, two-dimensional (2D) crystals. Starting from an initial set of 5388 point defects, comprising both native and extrinsic, single and double defects in ten previously synthesized 2D host materials, we identify 596 defects with a triplet ground state. For these defects, we calculate the defect formation energy, hyperfine (HF) coupling, and zero-field splitting (ZFS) tensors. For 39 triplet transitions exhibiting particularly low Huang-Rhys factors, we calculate the full photoluminescence (PL) spectrum. Our approach reveals many spin defects with narrow PL line shapes and emission frequencies covering a broad spectral range. Most of the defects are hosted in hexagonal BN (hBN), which we ascribe to its high stiffness, but some are also found in MgI2, MoS2, MgBr2 and CaI2. As specific examples, we propose the defects vSMoS0 and NiSMoS0 in MoS2 as interesting candidates with potential applications to magnetic field sensors and quantum information technology.

11.
Nat Commun ; 13(1): 468, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115510

RESUMO

Choosing optimal representation methods of atomic and electronic structures is essential when machine learning properties of materials. We address the problem of representing quantum states of electrons in a solid for the purpose of machine leaning state-specific electronic properties. Specifically, we construct a fingerprint based on energy decomposed operator matrix elements (ENDOME) and radially decomposed projected density of states (RAD-PDOS), which are both obtainable from a standard density functional theory (DFT) calculation. Using such fingerprints we train a gradient boosting model on a set of 46k G0W0 quasiparticle energies. The resulting model predicts the self-energy correction of states in materials not seen by the model with a mean absolute error of 0.14 eV. By including the material's calculated dielectric constant in the fingerprint the error can be further reduced by 30%, which we find is due to an enhanced ability to learn the correlation/screening part of the self-energy. Our work paves the way for accurate estimates of quasiparticle band structures at the cost of a standard DFT calculation.

12.
Nat Nanotechnol ; 16(8): 888-893, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34083771

RESUMO

Interlayer (IL) excitons, comprising electrons and holes residing in different layers of van der Waals bonded two-dimensional semiconductors, have opened new opportunities for room-temperature excitonic devices. So far, two-dimensional IL excitons have been realized in heterobilayers with type-II band alignment. However, the small oscillator strength of the resulting IL excitons and difficulties with producing heterostructures with definite crystal orientation over large areas have challenged the practical applicability of this design. Here, following the theoretical prediction and recent experimental confirmation of the existence of IL excitons in bilayer MoS2, we demonstrate the electrical control of such excitons up to room temperature. We find that the IL excitonic states preserve their large oscillator strength as their energies are manipulated by the electric field. We attribute this effect to the mixing of the pure IL excitons with intralayer excitons localized in a single layer. By applying an electric field perpendicular to the bilayer MoS2 crystal plane, excitons with IL character split into two peaks with an X-shaped field dependence as a clear fingerprint of the shift of the monolayer bands with respect to each other. Finally, we demonstrate the full control of the energies of IL excitons distributed homogeneously over a large area of our device.

13.
ACS Appl Mater Interfaces ; 12(49): 55134-55140, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33232104

RESUMO

Tailoring of the band gap in semiconductors is essential for the development of novel devices. In standard semiconductors, this modulation is generally achieved through highly energetic ion implantation. In two-dimensional (2D) materials, the photophysical properties are strongly sensitive to the surrounding dielectric environment presenting novel opportunities through van der Waals heterostructures encompassing atomically thin high-κ dielectrics. Here, we demonstrate a giant tuning of the exciton binding energy of the monolayer WSe2 as a function of the dielectric environment. Upon increasing the average dielectric constant from 2.4 to 15, the exciton binding energy is reduced by as much as 300 meV in ambient conditions. The experimentally determined exciton binding energies are in excellent agreement with the theoretical values predicted from a Mott-Wannier exciton model with parameters derived from first-principles calculations. Finally, we show how texturing of the dielectric environment can be used to realize potential-well arrays for excitons in 2D materials, which is a first step toward exciton metamaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA