Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Ann Surg ; 278(5): 669-675, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37497663

RESUMO

OBJECTIVE: To develop a protocol for the defatting of steatotic liver grafts during long-term ex situ normothermic machine perfusion. BACKGROUND: Despite the alarming increase in donor organ shortage, the highly prevalent fatty liver grafts are often discarded due to the risk of primary nonfunction. Effective strategies preventing such outcomes are currently lacking. An exciting new avenue is the introduction of ex situ normothermic machine perfusion (NMP), enabling a liver to remain fully functional for up to 2 weeks and providing a unique window of opportunity for defatting before transplantation. METHODS: Over a 5-year period, 23 discarded liver grafts and 28 partial livers from our resection program were tested during ex situ normothermic machine perfusion. The steatosis degree was determined on serial biopsies by expert pathologists, and triglyceride contents were measured simultaneously. RESULTS: Of 51 liver grafts, 20 were steatotic, with up to 85% macrovesicular steatosis, and were perfused for up to 12 days. Ten livers displayed marked (5 of which almost complete) loss of fat, while the other 10 did not respond to long-term perfusion. Successful defatting was related to prolonged perfusion, automated glucose control, circadian nutrition, and L-carnitine/fenofibrate supplementation. Pseudopeliotic steatosis and the associated activation of Kupffer/stellate cells were unexpected processes that might contribute to defatting. Synthetic and metabolic functions remained preserved for most grafts until perfusion ended. CONCLUSION: Ex situ long-term perfusion effectively reduces steatosis while preserving organ viability and may in the future allow transplantation of primarily unusable high-risk grafts, significantly increasing the number of organs available for transplantation.


Assuntos
Fígado Gorduroso , Transplante de Fígado , Humanos , Preservação de Órgãos/métodos , Fígado/patologia , Transplante de Fígado/métodos , Perfusão/métodos
2.
Artif Organs ; 47(2): 317-329, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36106378

RESUMO

BACKGROUND: Ex situliver machine perfusion at subnormothermic/normothermic temperature isincreasingly applied in the field of transplantation to store and evaluateorgans on the machine prior transplantation. Currently, various perfusionconcepts are in clinical and preclinical applications. Over the last 6 years ina multidisciplinary team, a novel blood based perfusion technology wasdeveloped to keep a liver alive and metabolically active outside of the bodyfor at least one week. METHODS: Within thismanuscript, we present and compare three scenarios (Group 1, 2 and 3) we werefacing during our research and development (R&D) process, mainly linked tothe measurement of free hemoglobin and lactate in the blood based perfusate. Apartfrom their proven value in liver viability assessment (ex situ), these twoparameters are also helpful in R&D of a long-term liver perfusion machine and moreover supportive in the biomedical engineering process. RESULTS: Group 1 ("good" liver on the perfusion machine) represents the best liver clearance capacity for lactate and free hemoglobin wehave observed. In contrast to Group 2 ("poor" liver on the perfusion machine), that has shown the worst clearance capacity for free hemoglobin. Astonishingly,also for Group 2, lactate is cleared till the first day of perfusion andafterwards, rising lactate values are detected due to the poor quality of theliver. These two perfusate parametersclearly highlight the impact of the organ quality/viability on the perfusion process. Whereas Group 3 is a perfusion utilizing a blood loop only (without a liver). CONCLUSION: Knowing the feasible ranges (upper- and lower bound) and the courseover time of free hemoglobin and lactate is helpful to evaluate the quality ofthe organ perfusion itself and the maturity of the developed perfusion device. Freehemoglobin in the perfusate is linked to the rate of hemolysis that indicates how optimizing (gentle blood handling, minimizing hemolysis) the perfusion machine actually is. Generally, a reduced lactate clearancecapacity can be an indication for technical problems linked to the blood supplyof the liver and therefore helps to monitor the perfusion experiments.Moreover, the possibility is given to compare, evaluate and optimize developed liverperfusion systems based on the given ranges for these two parameters. Otherresearch groups can compare/quantify their perfusate (blood) parameters withthe ones in this manuscript. The presented data, findings and recommendations willfinally support other researchers in developing their own perfusion machine ormodifying commercially availableperfusion devices according to their needs.


Assuntos
Hemólise , Transplante de Fígado , Humanos , Preservação de Órgãos , Fígado , Perfusão , Lactatos , Hemoglobinas
3.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37762247

RESUMO

Mechanically processed stromal vascular fraction (mSVF) is a highly interesting cell source for regenerative purposes, including wound healing, and a practical alternative to enzymatically isolated SVF. In the clinical context, SVF benefits from scaffolds that facilitate viability and other cellular properties. In the present work, the feasibility of methacrylated gelatin (GelMA), a stiffness-tunable, light-inducible hydrogel with high biocompatibility is investigated as a scaffold for SVF in an in vitro setting. Lipoaspirates from elective surgical procedures were collected and processed to mSVF and mixed with GelMA precursor solutions. Non-encapsulated mSVF served as a control. Viability was measured over 21 days. Secreted basic fibroblast growth factor (bFGF) levels were measured on days 1, 7 and 21 by ELISA. IHC was performed to detect VEGF-A, perilipin-2, and CD73 expression on days 7 and 21. The impact of GelMA-mSVF on human dermal fibroblasts was measured in a co-culture assay by the same viability assay. The viability of cultured GelMA-mSVF was significantly higher after 21 days (p < 0.01) when compared to mSVF alone. Also, GelMA-mSVF secreted stable levels of bFGF over 21 days. While VEGF-A was primarily expressed on day 21, perilipin-2 and CD73-positive cells were observed on days 7 and 21. Finally, GelMA-mSVF significantly improved fibroblast viability as compared with GelMA alone (p < 0.01). GelMA may be a promising scaffold for mSVF as it maintains cell viability and proliferation with the release of growth factors while facilitating adipogenic differentiation, stromal cell marker expression and fibroblast proliferation.


Assuntos
Gelatina , Fração Vascular Estromal , Humanos , Perilipina-2 , Fator A de Crescimento do Endotélio Vascular , Pele , Fator 2 de Crescimento de Fibroblastos
4.
Artif Organs ; 46(2): 273-280, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34287985

RESUMO

Robust viability assessment of grafts during normothermic liver perfusion is a prerequisite for organ use. Coagulation parameters are used commonly for liver assessment in patients. However, they are not yet included in viability assessment during ex situ perfusion. In this study, we analysed coagulation parameters during one week ex situ perfusion at 34℃. Eight discarded human livers were perfused with blood-based, heparinised perfusate for one week; perfusions in a further four livers were terminated on day 4 due to massive ongoing cell death. Coagulation parameters were well below the physiologic range at perfusion start. Physiologic levels were achieved within the first two perfusion days for factor V (68.5 ± 35.5%), factor VII (83.5 ± 26.2%), fibrinogen (2.1 ± 0.4 g/L) and antithrombin (107 ± 26.5%) in the livers perfused for one week. Despite the increased production of coagulation factors, INR was detectable only at 24h of perfusion (2.1 ± 0.3) and prolonged thereafter (INR > 9). The prolongation of INR was related to the high heparin level in the perfusate (anti-FXa > 3 U/mL). Intriguingly, livers with ongoing massive cell death also disclosed synthesis of factor V and improved INR. In summary, perfused livers were able to produce coagulation factors at a physiological level ex situ. We propose that single coagulation factor analysis is more reliable for assessing the synthetic function of perfused livers as compared to INR when using a heparinised perfusate.


Assuntos
Fatores de Coagulação Sanguínea/biossíntese , Fígado/fisiopatologia , Preservação de Órgãos/efeitos adversos , Perfusão/efeitos adversos , Heparina/farmacologia , Humanos , Coeficiente Internacional Normatizado , Fígado/metabolismo , Fígado/cirurgia , Transplante de Fígado , Preservação de Órgãos/métodos , Perfusão/métodos
5.
Ann Surg ; 274(5): 836-842, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34334640

RESUMO

OBJECTIVE: The aim of this study was to maintain long-term full function and viability of partial livers perfused ex situ for sufficient duration to enable ex situ treatment, repair, and regeneration. BACKGROUND: Organ shortage remains the single most important factor limiting the success of transplantation. Autotransplantation in patients with nonresectable liver tumors is rarely feasible due to insufficient tumor-free remnant tissue. This limitation could be solved by the availability of long-term preservation of partial livers that enables functional regeneration and subsequent transplantation. METHODS: Partial swine livers were perfused with autologous blood after being procured from healthy pigs following 70% in-vivo resection, leaving only the right lateral lobe. Partial human livers were recovered from patients undergoing anatomic right or left hepatectomies and perfused with a blood based perfusate together with various medical additives. Assessment of physiologic function during perfusion was based on markers of hepatocyte, cholangiocyte, vascular and immune compartments, as well as histology. RESULTS: Following the development phase with partial swine livers, 21 partial human livers (14 right and 7 left hemi-livers) were perfused, eventually reaching the targeted perfusion duration of 1 week with the final protocol. These partial livers disclosed a stable perfusion with normal hepatic function including bile production (5-10 mL/h), lactate clearance, and maintenance of energy exhibited by normal of adenosine triphosphate (ATP) and glycogen levels, and preserved liver architecture for up to 1 week. CONCLUSION: This pioneering research presents the inaugural evidence for long-term machine perfusion of partial livers and provides a pathway for innovative and relevant clinical applications to increase the availability of organs and provide novel approaches in hepatic oncology.


Assuntos
Hepatopatias/cirurgia , Regeneração Hepática/fisiologia , Transplante de Fígado/métodos , Fígado/fisiopatologia , Preservação de Órgãos/métodos , Perfusão/métodos , Animais , Modelos Animais de Doenças , Seguimentos , Humanos , Fígado/cirurgia , Hepatopatias/fisiopatologia , Estudos Retrospectivos , Suínos , Fatores de Tempo
6.
Biomacromolecules ; 22(1): 146-157, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-32813504

RESUMO

Moldable hydrogels composed of dynamic covalent bonds are attractive biomaterials for controlled release, as the dynamic exchange of bonds in these networks enables minimally invasive application via injection. Despite the growing interest in the biomedical application of dynamic covalent hydrogels, there is a lack of fundamental understanding as to how the network design and local environment control the release of biomolecules from these materials. In this work, we fabricated boronic-ester-based dynamic covalent hydrogels for the encapsulation and in vitro release of a model biologic (ß-galactosidase). We systematically investigated the role of network properties and of the external environment (temperature and presence of competitive binders) on release from these dynamic covalent hydrogels. We observed that surface erosion (and associated mass loss) governed biomolecule release. In addition, we developed a statistical model of surface erosion based on the binding equilibria in a boundary layer that described the rates of release. In total, our results will guide the design of dynamic covalent hydrogels as biomaterials for drug delivery applications.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Sistemas de Liberação de Medicamentos , Ésteres , Injeções
7.
Transpl Infect Dis ; 23(4): e13623, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33887094

RESUMO

INTRODUCTION: The use of normothermic liver machine perfusion to repair injured grafts ex situ is an emerging topic of clinical importance. However, a major concern is the possibility of microbial contamination in the absence of a fully functional immune system. Here, we report a standardized approach to maintain sterility during normothermic liver machine perfusion of porcine livers for one week. METHODS: Porcine livers (n = 42) were procured and perfused with blood at 34°C following aseptic technique and standard operating procedures. The antimicrobial prophylaxis was adapted and improved in a step-wise manner taking into account the pathogens that were detected during the development phase. Piperacillin-Tazobactam was applied as a single dose initially and modified to continuous application in the final protocol. In addition, the perfusion machine was improved to recapitulate partially the host's defense system. The final protocol was tested for infection prevention during one week of perfusion. RESULTS: During the development phase, microbial contamination occurred in 27 out of 39 (69%) livers with a mean occurrence of growth on 4 ± 1.6 perfusion days. The recovered microorganisms suggested an exogenous source of microbial contamination. The antimicrobial agents (piperacillin/tazobactam) could be maintained above the targeted minimal inhibitory concentration (8-16 mg/L) only with continuous application. In addition to continuous application of piperacillin/tazobactam, partial recapitulation of the host immune system ex situ accompanied by strict preventive measures for contact and air contamination maintained sterility during one week of perfusion. CONCLUSION: The work demonstrates feasibility of sterility maintenance for one week during ex situ normothermic liver perfusion.


Assuntos
Transplante de Fígado , Animais , Humanos , Fígado , Perfusão , Complicações Pós-Operatórias , Suínos
8.
J Am Chem Soc ; 142(36): 15371-15385, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32808783

RESUMO

Dynamic covalent networks (DCvNs) are increasingly used in advanced materials design with applications ranging from recyclable thermosets to self-healing hydrogels. However, the relationship between the underlying chemistry at the junctions of DCvNs and their macroscopic properties is still not fully understood. In this work, we constructed a robust framework to predict how complex network behavior in DCvNs emerges from the chemical landscape of the dynamic chemistry at the junction. Ideal dynamic covalent boronic ester-based hydrogels were used as model DCvNs. We developed physical models that describe how viscoelastic properties, as measured by shear rheometry, are linked to the molecular behavior of the dynamic junction, quantified via fluorescence and NMR spectroscopy and DFT calculations. Additionally, shear rheometry was combined with Transition State Theory to quantify the kinetics and thermodynamics of network rearrangements, enabling a mechanistic understanding including preferred reaction pathways for dynamic covalent chemistries. We applied this approach to corroborate the "loose-bolt" postulate for the reaction mechanism in Wulff-type boronic acids. These findings, grounded in molecular principles, advance our understanding and rational design of dynamic polymer networks, improving our ability to predict, design, and leverage their unique properties for future applications.

9.
Small ; 15(51): e1905421, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31762197

RESUMO

Ink engineering is a fundamental area of research within additive manufacturing (AM) that designs next-generation biomaterials tailored for additive processes. During the design of new inks, specific requirements must be considered, such as flowability, postfabrication stability, biointegration, and controlled release of therapeutic molecules. To date, many (bio)inks have been developed; however, few are sufficiently versatile to address a broad range of applications. In this work, a universal nanocarrier ink platform is presented that provides tailored rheology for extrusion-based AM and facilitates the formulation of biofunctional inks. The universal nanocarrier ink (UNI) leverages reversible polymer-nanoparticle interactions to form a transient physical network with shear-thinning and self-healing properties engineered for direct ink writing (DIW). The unique advantage of the material is that a range of functional secondary polymers can be combined with the UNI to enable stabilization of printed constructs via secondary cross-linking as well as customized biofunctionality for tissue engineering and drug delivery applications. Specific UNI formulations are used for bioprinting of living tissue constructs and DIW of controlled release devices. The robust and versatile nature of the UNI platform enables rapid formulation of a broad range of functional inks for AM of advanced biomaterials.


Assuntos
Materiais Biocompatíveis/química , Bioimpressão , Reologia , Engenharia Tecidual/métodos
10.
Biomacromolecules ; 20(12): 4430-4436, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31682423

RESUMO

The ability to engineer immune function has transformed modern medicine, highlighted by the success of vaccinations and recent efforts in cancer immunotherapy. Further directions in programming the immune system focus on the design of immunomodulatory biomaterials that can recruit, engage with, and program immune cells locally in vivo. Here, we synthesized shear-thinning and self-healing polymer-nanoparticle (PNP) hydrogels as a tunable and injectable biomaterial platform for local dendritic cell (DC) recruitment. PNP gels were formed from two populations of poly(ethylene glycol)-block-polylactide (PEG-b-PLA) NPs with the same diameter but different PEG brush length (2 or 5 kDa). PEG-b-PLA NPs with the longer PEG brush exhibited improved gel formation following self-assembly and faster recovery after shear-thinning. In all cases, model protein therapeutics were released via Fickian diffusion in vitro, and minor differences in the release rate between the gel formulations were observed. PNP hydrogels were loaded with the DC cytokine CCL21 and injected subcutaneously in a murine model. CCL21-loaded PNP hydrogels recruited DCs preferentially to the site of injection in vivo relative to non-CCL21-loaded hydrogels. Thus, PNP hydrogels comprise a simple and tunable platform biomaterial for in vivo immunomodulation following minimally invasive subcutaneous injection.


Assuntos
Quimiocina CCL21 , Células Dendríticas/imunologia , Hidrogéis , Lactatos , Nanopartículas/química , Polietilenoglicóis , Animais , Quimiocina CCL21/química , Quimiocina CCL21/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Células Dendríticas/citologia , Hidrogéis/química , Hidrogéis/farmacologia , Injeções Subcutâneas , Lactatos/química , Lactatos/farmacologia , Camundongos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia
11.
Proc Natl Acad Sci U S A ; 113(50): 14255-14260, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911849

RESUMO

Hydrogels are a class of soft material that is exploited in many, often completely disparate, industrial applications, on account of their unique and tunable properties. Advances in soft material design are yielding next-generation moldable hydrogels that address engineering criteria in several industrial settings such as complex viscosity modifiers, hydraulic or injection fluids, and sprayable carriers. Industrial implementation of these viscoelastic materials requires extreme volumes of material, upwards of several hundred million gallons per year. Here, we demonstrate a paradigm for the scalable fabrication of self-assembled moldable hydrogels using rationally engineered, biomimetic polymer-nanoparticle interactions. Cellulose derivatives are linked together by selective adsorption to silica nanoparticles via dynamic and multivalent interactions. We show that the self-assembly process for gel formation is easily scaled in a linear fashion from 0.5 mL to over 15 L without alteration of the mechanical properties of the resultant materials. The facile and scalable preparation of these materials leveraging self-assembly of inexpensive, renewable, and environmentally benign starting materials, coupled with the tunability of their properties, make them amenable to a range of industrial applications. In particular, we demonstrate their utility as injectable materials for pipeline maintenance and product recovery in industrial food manufacturing as well as their use as sprayable carriers for robust application of fire retardants in preventing wildland fires.

12.
Acc Chem Res ; 50(3): 508-513, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28945422

RESUMO

Convergent advances in the fields of synthetic chemistry, soft matter, molecular self-assembly, and the -omics era point to a new generation of synthetic biomaterials that are indistinguishable in form and function from biological matter. Such living biomaterials comprise a "Holy Grail" of the chemical sciences that will transform both modern medicine and materials design.


Assuntos
Materiais Biocompatíveis , Regeneração , Técnicas de Química Sintética , Sistemas de Liberação de Medicamentos , Eletrônica , Humanos
13.
Biomacromolecules ; 19(3): 740-747, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29394044

RESUMO

Modern medicine, biological research, and clinical diagnostics depend on the reliable supply and storage of complex biomolecules. However, biomolecules are inherently susceptible to thermal stress and the global distribution of value-added biologics, including vaccines, biotherapeutics, and Research Use Only (RUO) proteins, requires an integrated cold chain from point of manufacture to point of use. To mitigate reliance on the cold chain, formulations have been engineered to protect biologics from thermal stress, including materials-based strategies that impart thermal stability via direct encapsulation of the molecule. While direct encapsulation has demonstrated pronounced stabilization of proteins and complex biological fluids, no solution offers thermal stability while enabling facile and on-demand release from the encapsulating material, a critical feature for broad use. Here we show that direct encapsulation within synthetic, photoresponsive hydrogels protected biologics from thermal stress and afforded user-defined release at the point of use. The poly(ethylene glycol) (PEG)-based hydrogel was formed via a bioorthogonal, click reaction in the presence of biologics without impact on biologic activity. Cleavage of the installed photolabile moiety enabled subsequent dissolution of the network with light and release of the encapsulated biologic. Hydrogel encapsulation improved stability for encapsulated enzymes commonly used in molecular biology (ß-galactosidase, alkaline phosphatase, and T4 DNA ligase) following thermal stress. ß-galactosidase and alkaline phosphatase were stabilized for 4 weeks at temperatures up to 60 °C, and for 60 min at 85 °C for alkaline phosphatase. T4 DNA ligase, which loses activity rapidly at moderately elevated temperatures, was protected during thermal stress of 40 °C for 24 h and 60 °C for 30 min. These data demonstrate a general method to employ reversible polymer networks as robust excipients for thermal stability of complex biologics during storage and shipment that additionally enable on-demand release of active molecules at the point of use.


Assuntos
Bacteriófago T4/enzimologia , DNA Ligases/química , Temperatura Alta , Hidrogéis/química , Processos Fotoquímicos , Polietilenoglicóis/química , Proteínas Virais/química , Estabilidade Enzimática
14.
Proc Natl Acad Sci U S A ; 112(47): 14444-51, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26598696

RESUMO

Biomaterials that interface with biological systems are used to deliver drugs safely and efficiently; to prevent, detect, and treat disease; to assist the body as it heals; and to engineer functional tissues outside of the body for organ replacement. The field has evolved beyond selecting materials that were originally designed for other applications with a primary focus on properties that enabled restoration of function and mitigation of acute pathology. Biomaterials are now designed rationally with controlled structure and dynamic functionality to integrate with biological complexity and perform tailored, high-level functions in the body. The transition has been from permissive to promoting biomaterials that are no longer bioinert but bioactive. This perspective surveys recent developments in the field of polymeric and soft biomaterials with a specific emphasis on advances in nano- to macroscale control, static to dynamic functionality, and biocomplex materials.


Assuntos
Materiais Biocompatíveis , Humanos , Engenharia Tecidual
15.
Nano Lett ; 17(3): 1733-1740, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28145723

RESUMO

Selective killing of cancer cells while minimizing damage to healthy tissues is the goal of clinical radiation therapy. This therapeutic ratio can be improved by image-guided radiation delivery and selective radiosensitization of cancer cells. Here, we have designed and tested a novel trimodal theranostic nanoparticle made of bismuth and gadolinium for on-site radiosensitization and image contrast enhancement to improve the efficacy and accuracy of radiation therapy. We demonstrate in vivo magnetic resonance (MR), computed tomography (CT) contrast enhancement, and tumor suppression with prolonged survival in a non-small cell lung carcinoma model during clinical radiation therapy. Histological studies show minimal off-target toxicities due to the nanoparticles or radiation. By mimicking existing clinical workflows, we show that the bismuth-gadolinium nanoparticles are highly compatible with current CT-guided radiation therapy and emerging MR-guided approaches. This study reports the first in vivo proof-of-principle for image-guided radiation therapy with a new class of theranostic nanoparticles.


Assuntos
Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/radioterapia , Bismuto/uso terapêutico , Meios de Contraste/uso terapêutico , Gadolínio/uso terapêutico , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Nanopartículas/uso terapêutico , Dióxido de Silício/uso terapêutico , Células A549 , Adenocarcinoma de Pulmão , Animais , Bismuto/química , Meios de Contraste/química , Gadolínio/química , Humanos , Imageamento por Ressonância Magnética , Camundongos , Nanopartículas/química , Radioterapia Guiada por Imagem , Dióxido de Silício/química , Nanomedicina Teranóstica , Tomografia Computadorizada por Raios X
16.
Clin Sci (Lond) ; 131(3): 181-195, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28057890

RESUMO

Calcific aortic valve disease (CAVD) is the most prevalent valvular heart disease in the Western population, claiming 17000 deaths per year in the United States and affecting 25% of people older than 65 years of age. Contrary to traditional belief, CAVD is not a passive, degenerative disease but rather a dynamic disease, where initial cellular changes in the valve leaflets progress into fibrotic lesions that induce valve thickening and calcification. Advanced thickening and calcification impair valve function and lead to aortic stenosis (AS). Without intervention, progressive ventricular hypertrophy ensues, which ultimately results in heart failure and death. Currently, aortic valve replacement (AVR), surgical or transcatheter, is the only effective therapy to treat CAVD. However, these costly interventions are often delayed until the late stages of the disease. Nonetheless, 275000 are performed per year worldwide, and this is expected to triple by 2050. Given the current landscape, next-generation therapies for CAVD are needed to improve patient outcome and quality of life. Here, we first provide a background on the aortic valve (AV) and the pathobiology of CAVD as well as highlight current directions and future outlook on the development of functional 3D models of CAVD in vitro We then consider an often-overlooked aspect contributing to CAVD: miRNA (mis)regulation. Therapeutics could potentially normalize miRNA levels in the early stages of the disease and may slow its progression or even reverse calcification. We close with a discussion of strategies that would enable the use of miRNA as a therapeutic for CAVD. This focuses on an overview of controlled delivery technologies for nucleic acid therapeutics to the valve or other target tissues.


Assuntos
Estenose da Valva Aórtica/tratamento farmacológico , Valva Aórtica/patologia , Calcinose/tratamento farmacológico , Sistemas de Liberação de Medicamentos , MicroRNAs/metabolismo , Modelos Biológicos , Terapia de Alvo Molecular , Animais , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/etiologia , Estenose da Valva Aórtica/metabolismo , Calcinose/etiologia , Calcinose/metabolismo , Humanos
17.
J Am Chem Soc ; 138(3): 704-17, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26741786

RESUMO

Medicine relies on the use of pharmacologically active agents (drugs) to manage and treat disease. However, drugs are not inherently effective; the benefit of a drug is directly related to the manner by which it is administered or delivered. Drug delivery can affect drug pharmacokinetics, absorption, distribution, metabolism, duration of therapeutic effect, excretion, and toxicity. As new therapeutics (e.g., biologics) are being developed, there is an accompanying need for improved chemistries and materials to deliver them to the target site in the body, at a therapeutic concentration, and for the required period of time. In this Perspective, we provide an historical overview of drug delivery and controlled release followed by highlights of four emerging areas in the field of drug delivery: systemic RNA delivery, drug delivery for localized therapy, oral drug delivery systems, and biologic drug delivery systems. In each case, we present the barriers to effective drug delivery as well as chemical and materials advances that are enabling the field to overcome these hurdles for clinical impact.


Assuntos
Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/metabolismo , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Humanos , Estrutura Molecular
18.
Proc Natl Acad Sci U S A ; 110(48): 19336-41, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218588

RESUMO

Matrix elasticity regulates proliferation, apoptosis, and differentiation of many cell types across various tissues. In particular, stiffened matrix in fibrotic lesions has been shown to promote pathogenic myofibroblast activation. To better understand the underlying pathways by which fibroblasts mechano-sense matrix elasticity, we cultured primary valvular interstitial cells (VICs) isolated from porcine aortic valves on poly(ethylene glycol)-based hydrogels with physiologically relevant and tunable elasticities. We show that soft hydrogels preserve the quiescent fibroblast phenotype of VICs much better than stiff plastic plates. We demonstrate that the PI3K/AKT pathway is significantly up-regulated when VICs are cultured on stiff gels or tissue culture polystyrene compared with freshly isolated VICs. In contrast, myofibroblasts de-activate and pAKT/AKT decreases as early as 2 h after reducing the substrate modulus. When PI3K or AKT is inhibited on stiff substrates, myofibroblast activation is blocked. When constitutively active PI3K is overexpressed, the myofibroblast phenotype is promoted even on soft substrates. These data suggest that valvular fibroblasts are sensing the changes in matrix elasticity through the PI3K/AKT pathway. This mechanism may be used by other mechano-sensitive cells in response to substrate modulus, and this pathway may be a worthwhile target for treating matrix stiffness-associated diseases. Furthermore, hydrogels can be designed to recapitulate important mechanical cues in native tissues to preserve aspects of the native phenotype of primary cells for understanding basic cellular responses to biophysical and biochemical signals, and for tissue-engineering applications.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Fibroblastos/citologia , Valvas Cardíacas/citologia , Hidrogéis/química , Fenótipo , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Western Blotting , Biologia Computacional , Elasticidade , Imuno-Histoquímica , Fosfatidilinositol 3-Quinases/metabolismo , Polietilenoglicóis , Poliestirenos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA