RESUMO
As geographic range estimates for the IUCN Red List guide conservation actions, accuracy and ecological realism are crucial. IUCN's extent of occurrence (EOO) is the general region including the species' range, while area of occupancy (AOO) is the subset of EOO occupied by the species. Data-poor species with incomplete sampling present particular difficulties, but species distribution models (SDMs) can be used to predict suitable areas. Nevertheless, SDMs typically employ abiotic variables (i.e., climate) and do not explicitly account for biotic interactions that can impose range constraints. We sought to improve range estimates for data-poor, parapatric species by masking out areas under inferred competitive exclusion. We did so for two South American spiny pocket mice: Heteromys australis (Least Concern) and Heteromys teleus (Vulnerable due to especially poor sampling), whose ranges appear restricted by competition. For both species, we estimated EOO using SDMs and AOO with four approaches: occupied grid cells, abiotic SDM prediction, and this prediction masked by approximations of the areas occupied by each species' congener. We made the masks using support vector machines (SVMs) fit with two data types: occurrence coordinates alone; and coordinates along with SDM predictions of suitability. Given the uncertainty in calculating AOO for low-data species, we made estimates for the lower and upper bounds for AOO, but only make recommendations for H. teleus as its full known range was considered. The SVM approaches (especially the second one) had lower classification error and made more ecologically realistic delineations of the contact zone. For H. teleus, the lower AOO bound (a strongly biased underestimate) corresponded to Endangered (occupied grid cells), while the upper bounds (other approaches) led to Near Threatened. As we currently lack data to determine the species' true occupancy within the post-processed SDM prediction, we recommend that an updated listing for H. teleus include these bounds for AOO. This study advances methods for estimating the upper bound of AOO and highlights the need for better ways to produce unbiased estimates of lower bounds. More generally, the SVM approaches for post-processing SDM predictions hold promise for improving range estimates for other uses in biogeography and conservation.
Assuntos
Mudança Climática , Máquina de Vetores de Suporte , Animais , Clima , Ecossistema , CamundongosRESUMO
Thoroughly documenting prey items and diet composition is crucial for understanding a predator's role in the ecosystem. In gape restricted predators, such as snakes, documenting and analyzing the type and size of the prey is important to interpret their ecological role. We describe the diet patterns of a species of venomous snake, the Terciopelo pit viper (Bothrops asper), from its Ecuadorian populations. Examining the gastrointestinal contents of museum specimens collected over an extensive area of the Pacific lowlands of Ecuador, we encountered 69 identifiable prey items from four major taxonomic groups (amphibians, centipedes, mammals, and reptiles). We evaluated the observed composition of prey to check for differences between sexes and size-classes. To complement our observations of the Terciopelo species complex throughout their distribution, we carried out a systematic literature review. Our data show an ontogenetic shift in diet, with a transition from more diverse diet in juveniles towards a mammal-specialized diet in adults, and distinct proportion of prey taxa between the sexes in the juvenile size class.
Assuntos
Bothrops , Crotalinae , Animais , Ecossistema , Equador , Serpentes , MamíferosRESUMO
Neacomys is a genus of small spiny or bristly sigmodontine rodents that are common components of mammalian faunas in multiple biomes on Central and South America. Recent studies on this group have demonstrated that there is cryptic diversity yet to be discovered within currently recognized species that have not received comprehensive revisions, as well as in areas that have been overlooked. Here we ratify this assertion by describing a new species previously misidentified as the Narrow-footed Spiny Mouse (Neacomystenuipes) from the Chocó biogeographic region in northwestern Ecuador, Neacomysmarci Brito & Tinoco, sp. nov. Distinctiveness of this entity is supported by the combination of the following morphological characters: small size (head-body length 65-85 mm); long tail (69-126% longer than head-body length); pale buff-colored but gray-based belly fur; white throat; hypothenar pad usually absent; long nasals; and a condylar process higher than the coronoid process. Likewise genetic distance analyses and phylogenetic reconstructions based on cytochrome-b (Cytb) sequence data indicate a clear divergence from typical populations of N.tenuipes, and a sister relationship between them. The results presented here increase the diversity of Neacomys to 24 species, placing it among the most diverse genera within the sigmodontine rodents.
RESUMO
Ichthyomyini, a morphologically distinctive group of Neotropical cricetid rodents, lacks an integrative study of its systematics and biogeography. Since this tribe is a crucial element of the Sigmodontinae, the most speciose subfamily of the Cricetidae, we conducted a study that includes most of its recognized diversity (five genera and 19 species distributed from southern Mexico to northern Bolivia). For this report we analyzed a combined matrix composed of four molecular markers (RBP3, GHR, RAG1, Cytb) and 56 morphological traits, the latter including 15 external, 14 cranial, 19 dental, five soft-anatomical and three postcranial features. A variety of results were obtained, some of which are inconsistent with the currently accepted classification and understanding of the tribe. Ichthyomyini is retrieved as monophyletic, and it is divided into two main clades that are here recognized as subtribes: one to contain the genus Anotomys and the other composed by the remaining genera. Neusticomys (as currently recognized) was found to consist of two well supported clades, one of which corresponds to the original concept of Daptomys. Accordingly, we propose the resurrection of the latter as a valid genus to include several species from low to middle elevations and restrict Neusticomys to several highland forms. Numerous other revisions are necessary to reconcile the alpha taxonomy of ichthyomyines with our phylogenetic results, including placement of the Cajas Plateau water rat (formerly Chibchanomys orcesi) in the genus Neusticomys (sensu stricto), and the recognition of at least two new species (one in Neusticomys, one in Daptomys). Additional work is necessary to confirm other unanticipated results, such as the non-monophyletic nature of Rheomys and the presence of a possible new genus and species from Peru. Our results also suggest that ichthyomyines are one of the main Andean radiations of sigmodontine cricetids, with an evolutionary history dating to the Late Miocene and subsequent cladogenesis during the Pleistocene.
Assuntos
Arvicolinae , Sigmodontinae , Animais , Filogenia , Evolução Biológica , PeruRESUMO
The Andean cloud forests of Ecuador are home to several endemic mammals. Members of the Thomasomyini rodents are well represented in the Andes, with Thomasomys being the largest genus (47 species) of the subfamily Sigmodontinae. Within this tribe, however, there are genera that have escaped a taxonomic revision, and Chilomys Thomas, 1897, constitutes a paradigmatic example of these "forgotten" Andean cricetids. Described more than a century ago, current knowledge of this externally unmistakable montane rodent is very limited, and doubts persist as to whether or not it is monotypic. After several years of field efforts in Ecuador, a considerable quantity of specimens of Chilomys were collected from various localities representing both Andean chains. Based on an extensive genetic survey of the obtained material, we can demonstrate that what is currently treated as C. instans in Ecuador is a complex comprising at least five new species which are described in this paper. In addition, based on these noteworthy new evidence, we amend the generic diagnosis in detail, adding several key craniodental traits such as incisor procumbency and microdonty. These results indicate that Chilomys probably has a hidden additional diversity in large parts of the Colombian and Peruvian territories, inviting a necessary revision of the entire genus.
Assuntos
Arvicolinae , Roedores , Animais , Equador , Sigmodontinae , FlorestasRESUMO
Nephelomys albigularis is a sigmodontine rodent of the tribe Oryzomyini distributed in the Andean forests from central Ecuador to central Peru. Although several studies recognize this species as monotypic, significant morphological variation has been reported in Peruvian populations that were not properly assessed by direct comparisons with the type series from central Ecuador. We present a preliminary review of N. albigularis with an integrative approach and emphasis on Peruvian populations. We analyzed specimens using morphological and morphometric methods, complemented with phylogenetic analyses and species delimitation using sequence data from the cytochrome-b gene. Our results reveal that N. albigularis (sensu lato) comprises two taxa: N. albigularis s.s., from the montane forests in central and southern Ecuador and northwestern Peru, and Nephelomys sp. nov. from montane forest east of the Maran River. These taxa are morphologically distinct and are separated by a genetic distance of 5.90 1.01%. Nephelomys sp. nov. differs from N. albigularis s.s. by longer rump hairs, narrow hypothenar pads, faintly bicolor tail; absent interorbital ridges, low zygomatic plates, smoothly squared posterior margin of the hard palate or with a small median postpalatal process, smoothly edged ventral margin of the external auditory meatus, and slightly angular mandibular sigmoid notches. In this work, we present a diagnosis and description of the new species of Nephelomys and discuss the role of the Maran River as a potential driver for speciation in the genus Nephelomys.
Assuntos
Arvicolinae , Roedores , Animais , Florestas , Peru , FilogeniaRESUMO
The Andean cloud forests of western Colombia and Ecuador are home to several endemic mammals; members of the Oryzomyini, the largest Sigmodontinae tribe, are extensively represented in the region. However, our knowledge about this diversity is still incomplete, as evidenced by several new taxa that have been described in recent years. Extensive field work in two protected areas enclosing remnants of Chocó montane forest recovered a high diversity of small mammals. Among them, a medium-sized oryzomyine is here described as a new genus having at least three new species, two of them are named and diagnosed. Although externally similar to members of the genera Nephelomys and Tanyuromys, the new genus has a unique molar pattern within the tribe, being characterized by a noticeable degree of hypsodonty, simplification, lamination, and third molar compression. A phylogeny based on a combination of molecular markers, including nuclear and mitochondrial genes, and morphological data recovered the new genus as sister to Mindomys, and sequentially to Nephelomys. The new genus seems to be another example of a sigmodontine rodent unique to the Chocó biogeographic region. Its type species inhabits cloud forest between 1,600 and 2,300 m in northernmost Ecuador (Carchi Province); a second species is restricted to lower montane forest, 1,200 m, in northern Ecuador (Imbabura Province); a third putative species, here highlighted exclusively by molecular evidence from one immature specimen, is recorded in the montane forest of Reserva Otonga, northern Ecuador (Cotopaxi Province). Finally, the new genus is also recorded in southernmost Colombia (Nariño Department), probably represented there also by a new species. These species are spatially separated by deep river canyons through Andean forests, resulting in marked environmental discontinuities. Unfortunately, Colombian and Ecuadorian Pacific cloud forests are under rapid anthropic transformation. Although the populations of the type species are moderately abundant and occur in protected areas, the other two persist in threatened forest fragments.
RESUMO
The Stripe-headed Round-eared bat, Tonatia saurophila, includes three subspecies: Tonatia saurophila saurophila (known only from subfossil records in Jamaica), Tonatia saurophila bakeri (distributed from southeastern Mexico to northern Colombia, Venezuela west and north of the Cordillera de Mérida, and northwestern Ecuador), and Tonatia saurophila maresi (distributed in Venezuela east and south of the Cordillera de Mérida, the Guianas, Trinidad and Tobago, northeastern Brazil, and along the upper Amazon basin in Colombia, Ecuador, Peru, and Bolivia). The last two subspecies are an attractive example to test predictions about the historical role of the Andes in mammalian diversification. Based on morphological descriptions, morphometric analyses, and phylogenetic reconstruction using the mitochondrial gene Cyt-b and the nuclear exon RAG2, this study evaluates the intraspecific relationships within Tonatia saurophila and the taxonomic status of the taxon. The three subspecies of T. saurophila are recognizable as full species: Tonatia bakeri, Tonatia maresi, and Tonatia saurophila. The latter is restricted to its type locality and possibly is extinct. Tonatia bakeri, in addition to being larger than T. maresi, is morphologically distinguishable by possessing an acute apex at the posterior edge of the skull, a well-developed clinoid process, and relatively robust mandibular condyles, and by lacking a diastema between the canine and the first lower premolar. The genetic distance between T. bakeri and T. maresi is 7.65%.
ResumenEl Murciélago de orejas redondas de cabeza rayada, Tonatia saurophila, incluye tres subespecies: Tonatia saurophila saurophila (conocida sólo por registros subfósiles en Jamaica), Tonatia saurophila bakeri (distribuida desde el sureste de México hasta el norte de Colombia, Venezuela al oeste y norte de la Cordillera de Mérida, y el noroeste de Ecuador), y Tonatia saurophila maresi (distribuida en Venezuela al este y sur de la Cordillera de Mérida, las Guayanas, Trinidad y Tobago, el noreste de Brasil, y la vertiente amazónica de los Andes de Colombia, Ecuador, Peru y Bolivia). Las dos últimas subespecies representan un ejemplo atractivo para poner a prueba predicciones sobre el rol histórico de los Andes en la diversificación de mamíferos. Con base en descripciones morfológicas, análisis morfométricos y una reconstrucción filogenética empleando el gen mitocondrial Cyt-b y el gen nuclear RAG2, este estudio evalúa las relaciones intraspecíficas dentro de Tonatia saurophila y el estatus taxonómico del taxón. Las tres subespecies de T. saurophila son reconocidas como especies plenas: Tonatia bakeri, T. maresi y T. saurophila. Esta última está restringida a la localidad tipo y posiblemente está extinta. Tonatia bakeri, además de ser de mayor tamaño que T. maresi, se diferencia morfológicamente por poseer un ápice agudo en el borde posterior del cráneo, un proceso clinoideo bien desarrollado y cóndilos mandibulares relativamente robustos, y por carecer de un diastema entre el canino y el primer premolar inferior. La distancia genética entre T. bakeri y T. maresi es 7.65%.
RESUMO
The northernmost Peruvian Andes, a unique biogeographic region characterized by the confluence of multiple distinct ecosystems (i.e. Amazon basin, Pacific rainforest, the Sechura Desert, the northern and central Andes), is the southernmost geographic range limit of the South American shrews representing the genus Cryptotis. In the northernmost Peruvian Andes, two poorly known species have traditionally been reported (C. peruviensis and C. equatoris). Our study, based on molecular and morphologic traits, confirms the presence of C. peruviensis but also the occurrence of C. montivaga, based on specimens erroneously assigned to C. equatoris. Moreover, a new species of Cryptotis from the páramo and montane forests of the Tabaconas Namballe National Sanctuary near the Ecuadorian border is also described. It is a member of the thomasi group and is distinguished from other South American shrews by a unique set of morphological characters, including large body size, comparatively short tail, simple ectoloph of M3, and large PM4 post protocrista.