Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
J Exp Biol ; 225(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35749162

RESUMO

Climate change is forecasted to increase temperature variability and stochasticity. Most of our understanding of thermal physiology of intertidal organisms has come from laboratory experiments that acclimate organisms to submerged conditions and steady-state increases in temperatures. For organisms experiencing the ebb and flow of tides with unpredictable low tide aerial temperatures, the reliability of reported tolerances and thus predicted responses to climate change requires incorporation of environmental complexity into empirical studies. Using the mussel Mytilus californianus, our study examined how stochasticity of the thermal regime influences physiological performance. Mussels were acclimated to either submerged conditions or a tidal cycle that included either predictable, unpredictable or no thermal stress during daytime low tide. Physiological performance was measured through anaerobic metabolism, energy stores and cellular stress mechanisms just before low tide, and cardiac responses during a thermal ramp. Both air exposure and stochasticity of temperature change were important in determining thermal performance. Glycogen content was highest in the mussels from the unpredictable treatment, but there was no difference in the expression of heat shock proteins between thermal treatments, suggesting that mussels prioritise energy reserves to deal with unpredictable low tide conditions. Mussels exposed to fluctuating thermal regimes had lower gill anaerobic metabolism, which could reflect increased metabolic capacity. Our results suggest that although thermal magnitude plays an important role in shaping physiological performance, other key elements of the intertidal environment complexity such as stochasticity, thermal variability and thermal history are also important considerations for determining how species will respond to climate warming.


Assuntos
Mytilus , Aclimatação , Animais , Mudança Climática , Temperatura Alta , Mytilus/fisiologia , Reprodutibilidade dos Testes , Temperatura
2.
Artigo em Inglês | MEDLINE | ID: mdl-36049729

RESUMO

The Delta Smelt (Hypomesus transpacificus), once an abundant fish endemic to the Sacramento-San Joaquin Estuary, is now on the brink of extinction. Due to the high sensitivity of this species, knowledge of their stress response will be vital to their future survival and sustainability. Understanding the magnitude and kinetics of cortisol induction in Delta Smelt will provide valuable information when interpreting the degree of environmentally relevant stressors, such as warming and predator exposure. As little is known about the primary stress response and cortisol dynamics in Delta Smelt, the first aim of this study was to measure basal and maximal whole-body cortisol prior to and following exposure to a sublethal and significant netting stress at 17 and 21 °C. Our findings reveal that juvenile Delta Smelt held at 21 °C display an exacerbated stress response and a reduction in available energy compared to fish held at 17 °C. There was no evidence of the secondary stress response to the netting stress as whole-body glucose and lactate levels in treatment groups remained similar to basal values. The second aim of this study was to investigate the effect of a largemouth bass (Micropterus salmoides) predator cue, which was found to induce a significant increase in cortisol relative to control levels in juvenile Delta Smelt. Indices such as cortisol can be used as bioindicators of stress in the field and results from this study suggest that moderate temperatures and reduced predation are optimal release conditions during hatchery-based supplementation to minimize stress to this highly sensitive species.


Assuntos
Osmeriformes , Animais , Espécies em Perigo de Extinção , Biomarcadores Ambientais , Glucose , Hidrocortisona , Lactatos , Osmeriformes/fisiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-30447389

RESUMO

Previous studies have demonstrated reduced performance in triploid fish when reared under suboptimal conditions, which may be the result of a higher susceptibility to stressors when compared to diploids. The goal of this project was to investigate differences in the capacity of diploid (8 N) and triploid (12 N) white sturgeon, Acipenser transmontanus, to respond to both warm acclimation (6-weeks of acclimation to either 18 or 22 °C) and a subsequent acute stress (10-min low water stress). Following the 6-week acclimation, fish were sampled either before or following an acute low water stress. Bioindices of the primary and secondary stress response, hematology and cellular metabolic status were measured. We also sought to determine if time to peak cortisol levels were similar between diploid and triploid sturgeon after exposure to a severe acute stressor (netting stress). While both ploidies had similar primary and secondary responses to acute stress, both with and without warm acclimation, warm acclimation impacted the ability of diploid and triploid white sturgeon to mount a typical stress response to an acute stressor. In response to warm acclimation, triploids exhibited little change in branchial lactate dehydrogenase activity, while diploids increased activity. After exposure to an acute water reduction stress, diploids increased citrate synthase activity, yet triploids showed a decrease in activity. Differences in metabolic enzyme activity in response to warm acclimation and acute stress suggest triploid white sturgeon may have a reduced cellular metabolic capacity under chronic and acute stress, which may impact performance of triploid sturgeon in suboptimal conditions.


Assuntos
Aclimatação , Peixes/genética , Estresse Fisiológico , Temperatura , Triploidia , Animais , Peixes/fisiologia , Hidrocortisona/sangue , Água
5.
Glob Chang Biol ; 24(2): e655-e670, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29155460

RESUMO

Increases in atmospheric CO2 levels and associated ocean changes are expected to have dramatic impacts on marine ecosystems. Although the Southern Ocean is experiencing some of the fastest rates of change, few studies have explored how Antarctic fishes may be affected by co-occurring ocean changes, and even fewer have examined early life stages. To date, no studies have characterized potential trade-offs in physiology and behavior in response to projected multiple climate change stressors (ocean acidification and warming) on Antarctic fishes. We exposed juvenile emerald rockcod Trematomus bernacchii to three PCO2 treatments (~450, ~850, and ~1,200 µatm PCO2 ) at two temperatures (-1 or 2°C). After 2, 7, 14, and 28 days, metrics of physiological performance including cardiorespiratory function (heart rate [fH ] and ventilation rate [fV ]), metabolic rate (M˙O2), and cellular enzyme activity were measured. Behavioral responses, including scototaxis, activity, exploration, and escape response were assessed after 7 and 14 days. Elevated PCO2 independently had little impact on either physiology or behavior in juvenile rockcod, whereas warming resulted in significant changes across acclimation time. After 14 days, fH , fV and M˙O2 significantly increased with warming, but not with elevated PCO2 . Increased physiological costs were accompanied by behavioral alterations including increased dark zone preference up to 14%, reduced activity by 12%, as well as reduced escape time suggesting potential trade-offs in energetics. After 28 days, juvenile rockcod demonstrated a degree of temperature compensation as fV , M˙O2, and cellular metabolism significantly decreased following the peak at 14 days; however, temperature compensation was only evident in the absence of elevated PCO2 . Sustained increases in fV and M˙O2 after 28 days exposure to elevated PCO2 indicate additive (fV ) and synergistic (M˙O2) interactions occurred in combination with warming. Stressor-induced energetic trade-offs in physiology and behavior may be an important mechanism leading to vulnerability of Antarctic fishes to future ocean change.


Assuntos
Dióxido de Carbono/química , Mudança Climática , Perciformes/fisiologia , Aclimatação/fisiologia , Envelhecimento , Animais , Regiões Antárticas , Dióxido de Carbono/toxicidade , Ecossistema , Concentração de Íons de Hidrogênio , Água do Mar , Temperatura
6.
J Exp Biol ; 221(Pt 2)2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29378879

RESUMO

There is growing recognition of the need to understand the mechanisms underlying organismal resilience (i.e. tolerance, acclimatization) to environmental change to support the conservation management of sensitive and economically important species. Here, we discuss how functional genomics can be used in conservation biology to provide a cellular-level understanding of organismal responses to environmental conditions. In particular, the integration of transcriptomics with physiological and ecological research is increasingly playing an important role in identifying functional physiological thresholds predictive of compensatory responses and detrimental outcomes, transforming the way we can study issues in conservation biology. Notably, with technological advances in RNA sequencing, transcriptome-wide approaches can now be applied to species where no prior genomic sequence information is available to develop species-specific tools and investigate sublethal impacts that can contribute to population declines over generations and undermine prospects for long-term conservation success. Here, we examine the use of transcriptomics as a means of determining organismal responses to environmental stressors and use key study examples of conservation concern in fishes to highlight the added value of transcriptome-wide data to the identification of functional response pathways. Finally, we discuss the gaps between the core science and policy frameworks and how thresholds identified through transcriptomic evaluations provide evidence that can be more readily used by resource managers.


Assuntos
Conservação dos Recursos Naturais/métodos , Peixes/genética , Transcriptoma , Animais
7.
Artigo em Inglês | MEDLINE | ID: mdl-29864517

RESUMO

Previous studies suggest fish with additional copies of their genome (polyploids) underperform in suboptimal conditions and may be more susceptible to stress and disease. The objective of this study was to determine the role ploidy plays in the physiological response of white sturgeon to chronically elevated water temperatures. White sturgeon of two ploidies (8 N and 10 N) were acclimated to ambient (18 °C) and warm (22 °C) water. Bioindices of stress (plasma cortisol, glucose and lactate, total erythrocyte count, hematocrit, hemoglobin, mean erythrocyte volume, mean erythrocyte hemoglobin, and mean erythrocyte hemoglobin concentration), immunity (respiratory burst, plasma lysozyme, and total leukocyte count), and cellular metabolic capacity (lactate dehydrogenase and citrate synthase activity) were measured before and after a 6-week acclimation period. Both ploidies appear comparable in their constitutive immune and stress parameters and respond similarly to warming. Hematological indices suggest 8 N and 10 N sturgeon are similar in oxygen carrying capacity; however, differences in enzyme activity between ploidies indicate that 10 N sturgeon may have a lower cellular aerobic capacity. Our results have implications for the screening and management of ploidy on white sturgeon farms and hatcheries, as the differences between ploidies may affect 10 N sturgeon performance at elevated water temperatures. Further research is needed to elucidate the differences in inducible stress and immune responses and metabolism of white sturgeon of different ploidies.


Assuntos
Aclimatação , Peixes/genética , Peixes/fisiologia , Imunidade Inata , Ploidias , Estresse Fisiológico , Temperatura , Animais , Glicemia/metabolismo , Citrato (si)-Sintase/metabolismo , Feminino , Proteínas de Peixes/metabolismo , Peixes/imunologia , Peixes/metabolismo , Brânquias/enzimologia , Hidrocortisona/sangue , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/sangue , Masculino , Análise de Componente Principal
8.
J Therm Biol ; 76: 147-155, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30143289

RESUMO

Human-induced thermal variability can disrupt energy balance and performance in ectotherms; however, phenotypic plasticity may play a pivotal protective role. Ectotherm performance can be maintained in thermally heterogeneous habitats by reducing the thermal sensitivity of physiological processes and concomitant performance. We examined the capacity of juvenile green sturgeon (Acipenser medirostris) to respond to daily thermal variation. Juveniles (47 days post-hatch) were exposed to either stable (15 ±â€¯0.5 °C) or variable (narrowly variable: 13-17 °C day-1 or widely variable 11-21 °C day-1) thermoperiod treatments, with equivalent mean temperatures (15 ±â€¯0.5 °C), for 21 days. Growth (relative growth rate, % body mass gain), upper thermal tolerance (critical thermal maxima, CTMax) and the thermal sensitivity of swimming performance (critical swimming speed, Ucrit) were assessed in fish from all treatments. Accelerated growth was observed in fish maintained under widely variable temperatures compared to narrowly variable and stable temperatures. No significant variation in CTMax was observed among thermoperiod treatments, suggesting all treatment groups acclimated to the mean temperature rather than daily maximums. The widely variable treatment induced a plastic response in swimming performance, where Ucrit was insensitive to temperature and performance was maintained across a widened thermal breadth. Maximum Ucrit attained was similar among thermoperiod treatments, but performance was maximised at different test temperatures (stable: 4.62 ±â€¯0.44 BL s-1 at 15 °C; narrowly variable: 4.52 ±â€¯0.23 BL s-1 at 21 °C; widely variable: 3.90 ±â€¯0.24 BL s-1 at 11 °C, mean ±â€¯s.e.m.). In combination, these findings suggest juvenile A. medirostris are resilient to daily fluctuations in temperature, within the temperature range tested here.


Assuntos
Aclimatação , Peixes/fisiologia , Animais , Feminino , Peixes/crescimento & desenvolvimento , Masculino , Natação , Temperatura
9.
J Exp Biol ; 220(Pt 17): 3072-3083, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28855321

RESUMO

Much of our understanding of the thermal physiology of intertidal organisms comes from experiments with animals acclimated under constant conditions and exposed to a single heat stress. In nature, however, the thermal environment is more complex. Aerial exposure and the unpredictable nature of thermal stress during low tides may be critical factors in defining the thermal physiology of intertidal organisms. In the fingered limpet, Lottia digitalis, we investigated whether upper temperature tolerance and thermal sensitivity were influenced by the pattern of fluctuation with which thermal stress was applied. Specifically, we examined whether there was a differential response (measured as cardiac performance) to repeated heat stress of a constant and predictable magnitude compared with heat stress applied in a stochastic and unpredictable nature. We also investigated differences in cellular metabolism and damage following immersion for insights into biochemical mechanisms of tolerance. Upper temperature tolerance increased with aerial exposure, but no significant differences were found between predictable treatments of varying magnitudes (13°C versus 24°C versus 32°C). Significant differences in thermal tolerance were found between unpredictable trials with different heating patterns. There were no significant differences among treatments in basal citrate synthase activity, glycogen content, oxidative stress or antioxidants. Our results suggest that aerial exposure and recent thermal history, paired with relief from high low-tide temperatures, are important factors modulating the capacity of limpets to deal with thermal stress.


Assuntos
Aclimatação , Meio Ambiente , Gastrópodes/fisiologia , Temperatura , Animais , Processos Estocásticos , Termotolerância , Ondas de Maré
10.
J Exp Biol ; 220(Pt 3): 369-378, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27872216

RESUMO

There is an accumulating body of evidence suggesting that the sub-zero Antarctic marine environment places physiological constraints on protein homeostasis. Levels of ubiquitin (Ub)-conjugated proteins, 20S proteasome activity and mRNA expression of many proteins involved in both the Ub tagging of damaged proteins as well as the different complexes of the 26S proteasome were measured to examine whether there is thermal compensation of the Ub-proteasome pathway in Antarctic fishes to better understand the efficiency of the protein degradation machinery in polar species. Both Antarctic (Trematomus bernacchii, Pagothenia borchgrevinki) and non-Antarctic (Notothenia angustata, Bovichtus variegatus) notothenioids were included in this study to investigate the mechanisms of cold adaptation of this pathway in polar species. Overall, there were significant differences in the levels of Ub-conjugated proteins between the Antarctic notothenioids and B. variegatus, with N. angustata possessing levels very similar to those of the Antarctic fishes. Proteasome activity in the gills of Antarctic fishes demonstrated a high degree of temperature compensation such that activity levels were similar to activities measured in their temperate relatives at ecologically relevant temperatures. A similar level of thermal compensation of proteasome activity was not present in the liver of two Antarctic fishes. Higher gill proteasome activity is likely due in part to higher cellular levels of proteins involved in the Ub-proteasome pathway, as evidenced by high mRNA expression of relevant genes. Reduced activity of the Ub-proteasome pathway does not appear to be the mechanism responsible for elevated levels of denatured proteins in Antarctic fishes, at least in the gills.


Assuntos
Aclimatação , Proteínas de Peixes/metabolismo , Perciformes/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Animais , Regiões Antárticas , Temperatura Baixa , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitina/genética
11.
J Exp Biol ; 219(Pt 8): 1203-13, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26944503

RESUMO

To date, numerous studies have shown negative impacts of CO2-acidified seawater (i.e. ocean acidification, OA) on marine organisms, including calcifying invertebrates and fishes; however, limited research has been conducted on the physiological effects of OA on polar fishes and even less on the impact of OA on early developmental stages of polar fishes. We evaluated aspects of aerobic metabolism and cardiorespiratory physiology of juvenile emerald rockcod, ITALIC! Trematomus bernacchii, an abundant fish in the Ross Sea, Antarctica, to elevated partial pressure of carbon dioxide ( ITALIC! PCO2 ) [420 (ambient), 650 (moderate) and 1050 (high) µatm ITALIC! PCO2 ] over a 1 month period. We examined cardiorespiratory physiology, including heart rate, stroke volume, cardiac output and ventilation rate, whole organism metabolism via oxygen consumption rate and sub-organismal aerobic capacity by citrate synthase enzyme activity. Juvenile fish showed an increase in ventilation rate under high ITALIC! PCO2 compared with ambient ITALIC! PCO2 , whereas cardiac performance, oxygen consumption and citrate synthase activity were not significantly affected by elevated ITALIC! PCO2 Acclimation time had a significant effect on ventilation rate, stroke volume, cardiac output and citrate synthase activity, such that all metrics increased over the 4 week exposure period. These results suggest that juvenile emerald rockcod are robust to near-future increases in OA and may have the capacity to adjust for future increases in ITALIC! PCO2  by increasing acid-base compensation through increased ventilation.


Assuntos
Ácidos/química , Envelhecimento/fisiologia , Dióxido de Carbono/farmacologia , Peixes/fisiologia , Água do Mar/química , Animais , Regiões Antárticas , Metabolismo Basal/efeitos dos fármacos , Citrato (si)-Sintase/metabolismo , Coração/efeitos dos fármacos , Coração/fisiologia , Músculos/efeitos dos fármacos , Músculos/fisiologia , Consumo de Oxigênio/efeitos dos fármacos , Respiração/efeitos dos fármacos
12.
J Exp Biol ; 219(Pt 11): 1705-16, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27252456

RESUMO

Climate change and associated increases in water temperatures may impact physiological performance in ectotherms and exacerbate endangered species declines. We used an integrative approach to assess the impact of elevated water temperature on two fishes of immediate conservation concern in a large estuary system, the threatened longfin smelt (Spirinchus thaleichthys) and endangered delta smelt (Hypomesus transpacificus). Abundances have reached record lows in California, USA, and these populations are at imminent risk of extirpation. California is currently impacted by a severe drought, resulting in high water temperatures, conditions that will become more common as a result of climate change. We exposed fish to environmentally relevant temperatures (14°C and 20°C) and used RNA sequencing to examine the transcriptome-wide responses to elevated water temperature in both species. Consistent with having a lower temperature tolerance, longfin smelt exhibited a pronounced cellular stress response, with an upregulation of heat shock proteins, after exposure to 20°C that was not observed in delta smelt. We detected an increase in metabolic rate in delta smelt at 20°C and increased expression of genes involved in metabolic processes and protein synthesis, patterns not observed in longfin smelt. Through examination of responses across multiple levels of biological organization, and by linking these responses to habitat distributions in the wild, we demonstrate that longfin smelt may be more susceptible than delta smelt to increases in temperatures, and they have little room to tolerate future warming in California. Understanding the species-specific physiological responses of sensitive species to environmental stressors is crucial for conservation efforts and managing aquatic systems globally.


Assuntos
Secas , Espécies em Perigo de Extinção , Estuários , Osmeriformes/fisiologia , Temperatura , Animais , California , Meio Ambiente , Perfilação da Expressão Gênica , Ontologia Genética , Consumo de Oxigênio/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-27095630

RESUMO

The objective of the current study was to investigate the effects of feed restriction on whole-organism upper thermal tolerance and the heat shock response of green and white sturgeon to determine how changes in food amount might influence physiological performance of each species when faced with temperature stress. Two parallel feed restriction trials were carried out for juvenile green (202g; 222-day post hatch: dph) and white sturgeon (205g; 197-dph) to manipulate nutritional status at 12.5%, 25%, 50%, or 100% of optimum feeding rate (100% OFR were 1.6% and 1.8% body weight/day, respectively) for four weeks. Following the trials, the critical thermal maximum (CTMax, 0.3°C/min) of sturgeon (N=12/treatment/species) was assessed as an indicator of whole-organism upper thermal tolerance. To assess temperature sensitivity, sturgeon (N=9/treatment/species) were acutely transferred to two temperature treatments (28°C and 18°C as a handling control) for 2h followed by 2h of recovery at 18°C before being sacrificed, and gill, brain, and mucus sampled for measurements of 70-kDa heat shock protein levels (Hsc/Hsp70). Feeding rate had species-specific effects on CTMax in green and white sturgeon such that CTMax of green sturgeon decreased as the magnitude of feed restriction increased; whereas, CTMax of white sturgeon did not change with feed restriction. Elevated temperature (28°C) and feed restriction increased Hsc/Hsp70 levels in the gill tissue of green sturgeon, while heat shock increased Hsc/Hsp70 levels in the mucus of white sturgeon. Our results suggest that green sturgeon may be more susceptible to temperature stress under food-limited conditions.


Assuntos
Peixes/fisiologia , Resposta ao Choque Térmico/fisiologia , Ração Animal , Animais , Ingestão de Alimentos , Proteínas de Peixes/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Temperatura
14.
Glob Chang Biol ; 21(7): 2488-2499, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25683857

RESUMO

Despite the abundance of literature on organismal responses to multiple environmental stressors, most studies have not matched the timing of experimental manipulations with the temporal pattern of stressors in nature. We test the interactive effects of diel-cycling hypoxia with both warming and decreased salinities using ecologically realistic exposures. Surprisingly, we found no evidence of negative synergistic effects on Olympia oyster growth; rather, we found only additive and opposing effects of hypoxia (detrimental) and warming (beneficial). We suspect that diel-cycling provided a temporal refuge that allowed physiological compensation. We also tested for latent effects of warming and hypoxia to low-salinity tolerance using a seasonal delay between stressor events. However, we did not find a latent effect, rather a threshold survival response to low salinity that was independent of early life-history exposure to warming or hypoxia. The absence of synergism is likely the result of stressor treatments that mirror the natural timing of environmental stressors. We provide environmental context for laboratory experimental data by examining field time series environmental data from four North American west coast estuaries and find heterogeneous environmental signals that characterize each estuary, suggesting that the potential stressor exposure to oysters will drastically differ over moderate spatial scales. This heterogeneity implies that efforts to conserve and restore oysters will require an adaptive approach that incorporates knowledge of local conditions. We conclude that studies of multiple environmental stressors can be greatly improved by integrating ecologically realistic exposure and timing of stressors found in nature with organismal life-history traits.

15.
Annu Rev Physiol ; 72: 127-45, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20148670

RESUMO

Rising atmospheric carbon dioxide has resulted in scientific projections of changes in global temperatures, climate in general, and surface seawater chemistry. Although the consequences to ecosystems and communities of metazoans are only beginning to be revealed, a key to forecasting expected changes in animal communities is an understanding of species' vulnerability to a changing environment. For example, environmental stressors may affect a particular species by driving that organism outside a tolerance window, by altering the costs of metabolic processes under the new conditions, or by changing patterns of development and reproduction. Implicit in all these examples is the foundational understanding of physiological mechanisms and how a particular environmental driver (e.g., temperature and ocean acidification) will be transduced through the animal to alter tolerances and performance. In this review, we highlight examples of mechanisms, focusing on those underlying physiological plasticity, that operate in contemporary organisms as a means to consider physiological responses that are available to organisms in the future.


Assuntos
Aclimatação/fisiologia , Meio Ambiente , Aquecimento Global , Adaptação Fisiológica/fisiologia , Animais , Dióxido de Carbono/análise , Fenômenos Fisiológicos Celulares , Humanos , Concentração de Íons de Hidrogênio , Oceanos e Mares , Estresse Fisiológico , Simbiose , Temperatura
16.
J Comp Physiol B ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955877

RESUMO

Southern Distinct Population Segment (sDPS) green sturgeon spawn solely in one stretch of the Sacramento River in California. Management of this spawning habitat is complicated by cold water temperature requirements for the conservation of winter-run Chinook salmon. This study assessed whether low incubation and rearing temperatures resulted in carryover effects across embryo to early juvenile life stages on scaling relationships in growth and metabolism in northern DPS green sturgeon used as a proxy for sDPS green sturgeon. Fish were incubated and reared at 11 °C and 15 °C, with a subset experiencing a reciprocal temperature transfer post-hatch, to assess recovery from cold incubation or to simulate a cold-water dam release which would chill rearing larvae. Growth and metabolic rate of embryos and larvae were measured to 118 days post hatch. Reciprocal temperature transfers revealed a greater effect of low temperature exposure during larval rearing rather than during egg incubation. While 11 °C eggs hatched at a smaller length, log-transformed length-weight relationships showed that these differences in developmental trajectory dissipated as individuals achieved juvenile morphology. However, considerable size-at-age differences persisted between rearing temperatures, with 15 °C fish requiring 60 days post-hatch to achieve 1 g in mass, whereas 11 °C fish required 120 days to achieve 1 g, resulting in fish of the same age at the completion of the experiment with a ca. 37-fold difference in weight. Consequently, our study suggests that cold rearing temperatures have far more consequential downstream effects than cold embryo incubation temperatures. Growth delays from 11 °C rearing temperatures would greatly increase the period of vulnerability to predation in larval green sturgeon. The scaling relationship between log-transformed whole-body metabolism and mass exhibited a steeper slope and thus an increased oxygen requirement with size in 11 °C reared fish, potentially indicating an energetically unsustainable situation. Understanding how cold temperatures affect green sturgeon ontogeny is necessary to refine our larval recruitment estimations for this threatened species.

17.
J Exp Biol ; 216(Pt 15): 2858-69, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23580728

RESUMO

Marine animals living high in the rocky intertidal zone experience long durations of aerial emersion, sometimes enduring rapid increases in temperature. To date, much of our understanding of the thermal physiology of intertidal organisms comes from studies in which organisms are exposed to increasing temperatures when immersed, with the added effect of aerial emersion rarely considered. In this study, we examined the physiological response of the finger limpet, Lottia digitalis, to increases in temperature under both immersed and emersed conditions. We investigated the thermal sensitivity and upper temperature tolerance of limpets through assessment of cardiac performance, metabolic rate, glycogen depletion and maintenance of protein integrity. Cardiac performance in response to ecologically relevant increases in temperature was similar in emersed and immersed limpets from 15 to 35°C and showed multiple break patterns in heart rate as temperature was increased. Overall, emersed limpets had a greater upper thermal limit on cardiac performance, with the ability to maintain heart rate at a temperature 3-5°C higher than that for immersed limpets. Metabolism in limpets also differed significantly between emersion and immersion, where a significant depression in aerobic metabolic rate was observed under immersion with increasing temperature. Greater levels of ubiquitin-conjugated proteins were found under emersed conditions compared with immersed limpets. Maintaining cardiac performance and aerobic metabolism to higher temperatures under emersed conditions is likely reflective of physiological adaptations to live in an aerially exposed environment. Measured field temperatures where fingered limpets were collected demonstrated that limpets have a narrow thermal safety margin for aerobic performance, and currently experience multiple days where summer temperatures might exceed their threshold limits.


Assuntos
Gastrópodes/fisiologia , Imersão , Temperatura , Animais , Metabolismo Basal/fisiologia , California , Glicogênio/metabolismo , Coração/fisiologia , Frequência Cardíaca/fisiologia , Consumo de Oxigênio/fisiologia , Ubiquitina/metabolismo , Movimentos da Água
18.
Conserv Physiol ; 11(1): coad036, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383481

RESUMO

The San Francisco Estuary (SFE) is one of the most degraded ecosystems in the United States, and organisms that inhabit it are exposed to a suite of environmental stressors. The delta smelt (Hypomesus transpacificus), a small semi-anadromous fish endemic to the SFE and considered an indicator species, is close to extinction in the wild. The goal of this study was to investigate how environmental alterations to the SFE, such as reductions in turbidities, higher temperatures and increased prevalence of invasive predators affect the physiology and stress response of juvenile delta smelt. Juvenile delta smelt were exposed to two temperatures (17 and 21°C) and two turbidities (1-2 and 10-11 NTU) for 2 weeks. After the first week of exposure, delta smelt were exposed to a largemouth bass (Micropterus salmoides) predator cue at the same time every day for 7 days. Fish were measured and sampled on the first (acute) and final (chronic) day of exposures to predator cues and later analyzed for whole-body cortisol, glucose, lactate, and protein. Length and mass measurements were used to calculate condition factor of fish in each treatment. Turbidity had the greatest effect on juvenile delta smelt and resulted in reduced cortisol, increased glucose and lactate, and greater condition factor. Elevated temperatures reduced available energy in delta smelt, indicated by lower glucose and total protein, whereas predator cue exposure had negligible effects on their stress response. This is the first study to show reduced cortisol in juvenile delta smelt held in turbid conditions and adds to the growing data that suggest this species performs best in moderate temperatures and turbidities. Multistressor experiments are necessary to understand the capacity of delta smelt to respond to the multivariate and dynamic changes in their natural environment, and results from this study should be considered for management-based conservation efforts.

19.
J Comp Physiol B ; 192(6): 737-750, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36104549

RESUMO

Notothenioidei fishes have evolved under stable cold temperatures; however, ocean conditions are changing globally, with polar regions poised to experience the greatest changes in environmental factors, such as warming. These stressors have the potential to dramatically affect energetic demands, and the persistence of the notothenioids will be dependent on metabolic capacity, or the ability to match energy supply with energy demand, to restore homeostasis in the face of changing climate conditions. In this study we examined aerobic metabolic capacity in three species, Trematomus bernacchii, T. pennellii and T. newnesi, and between two life stages, juvenile and adult, by assessing mitochondrial function of permeabilized cardiac fibers. Respiratory capacity differed among the adult notothenioids in this study, with greater oxidative phosphorylation (OXPHOS) respiration in the pelagic T. newnesi than the benthic T. bernacchii and T. pennellii. The variation in mitochondrial respiratory capacity was likely driven by differences in the mitochondrial content, as measured by citrate synthase activity, which was the highest in T. newnesi. In addition to high OXPHOS, T. newnesi exhibited lower LEAK respiration, resulting in greater mitochondrial efficiency than either T. bernacchii or T. pennellii. Life stage largely had an effect on mitochondrial efficiency and excess complex IV capacity, but there were little differences in OXPHOS respiration and electron transfer capacity, pointing to a lack of significant differences in the metabolic capacity between juveniles and adults. Overall, these results demonstrate species-specific differences in cardiac metabolic capacity, which may influence the acclimation potential of notothenioid fishes to changing environmental conditions.


Assuntos
Perciformes , Aclimatação/fisiologia , Animais , Regiões Antárticas , Citrato (si)-Sintase/metabolismo , Peixes/fisiologia , Mitocôndrias , Perciformes/fisiologia
20.
Conserv Physiol ; 9(1): coab054, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257996

RESUMO

Warming and hypoxia are two stressors commonly found within natural salmon redds that are likely to co-occur. Warming and hypoxia can interact physiologically, but their combined effects during fish development remain poorly studied, particularly stage-specific effects and potential carry-over effects. To test the impacts of warm water temperature and hypoxia as individual and combined developmental stressors, late fall-run Chinook salmon embryos were reared in 10 treatments from fertilization through hatching with two temperatures [10°C (ambient) and 14°C (warm)], two dissolved oxygen saturation levels [normoxia (100% air saturation, 10.4-11.4 mg O2/l) and hypoxia (50% saturation, 5.5 mg O2/l)] and three exposure times (early [eyed stage], late [silver-eyed stage] and chronic [fertilization through hatching]). After hatching, all treatments were transferred to control conditions (10°C and 100% air saturation) through the fry stage. To study stage-specific effects of stressor exposure we measured routine metabolic rate (RMR) at two embryonic stages, hatching success and growth. To evaluate carry-over effects, where conditions during one life stage influence performance in a later stage, RMR of all treatments was measured in control conditions at two post-hatch stages and acute stress tolerance was measured at the fry stage. We found evidence of stage-specific effects of both stressors during exposure and carry-over effects on physiological performance. Both individual stressors affected RMR, growth and developmental rate while multiple stressors late in development reduced hatching success. RMR post-hatch showed persistent effects of embryonic stressor exposure that may underlie differences observed in developmental timing and acute stress tolerance. The responses to stressors that varied by stage during development suggest that stage-specific management efforts could support salmon embryo survival. The persistent carry-over effects also indicate that considering sub-lethal effects of developmental stressor exposure may be important to understanding how climate change influences the performance of salmon across life stages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA