Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biologicals ; 60: 49-54, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31105021

RESUMO

The NIH assay is used to assess the potency of rabies vaccine and is currently a key measure required for vaccine release. As this test involves immunization of mice and subsequent viral challenge, efforts are being made to develop alternative analytical methods that do not rely on animal testing. Sanofi Pasteur has reported the development of a G-protein specific ELISA assay that has shown agreement with the NIH test. In this study we have generated several non-conform vaccine lots by an excessive inactivation with ß-propiolactone (BPL) and assessed the capacity of both tests to detect the corresponding consequences. Excessive BPL inactivation causes G-protein unfolding, altering in turn viral morphology and the continuity of the G-protein layer in the viral particle. Both the NIH and the ELISA tests were able to monitor the consequences of excessive inactivation in a similar manner. Of note, the experimental error of the ELISA test was well below that of the NIH test. These results increase the prospect that the ELISA test could be considered a suitable candidate for the replacement of the NIH test.


Assuntos
Bioensaio , Vacina Antirrábica , Potência de Vacina , Animais , Ensaio de Imunoadsorção Enzimática , Camundongos , Raiva/imunologia , Raiva/patologia , Raiva/prevenção & controle , Vacina Antirrábica/química , Vacina Antirrábica/imunologia , Vacinação , Vacinas de Produtos Inativados
2.
Biologicals ; 54: 1-7, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29861269

RESUMO

BACKGROUND: Recombinant proteins expressed in host cell systems may contain host cell proteins (HCP) as impurities. While there is no clear evidence of clinical adverse events attributable to HCP, HCP levels and profiles must be documented to meet regulatory requirements and to understand the consistency of the biological product and manufacturing process. We present a general strategy for HCP characterization applied to a recombinant protein antigen, Hepatitis B surface antigen (HBsAg) used in a multivalent vaccine. METHODS: Polyclonal antisera raised against HCPs in process fractions from a mock preparation of the HBsAg yeast expression host, Hansenula polymorpha, were used to develop a quantitative sandwich ELISA to measure HCP content in batches of purified recombinant HBsAg. Batches were also subjected to SDS-PAGE and LC-MS/MS to identify detectable proteins. Batch consistency was further assessed by SDS-PAGE/densitometry purity analysis and by the ratio of specific HBsAg content (by ELISA) to total protein. RESULTS: Using the quantitative HCP ELISA, the HCP content showed no discernable trend in multiple HBsAg batches manufactured over a 5-year period. All batches were ≥95% pure by SDS-PAGE/densitometry, with consistent HBsAg/total protein ratios. In addition to the expected HBsAg antigen protein, LC-MS/MS analysis of three HBsAg batches identified several yeast proteins, none of which are known to cause adverse reactions in humans. CONCLUSIONS: Analysis of multiple HBsAg batches showed consistent HCP content and identification profiles, as well as product purity and specific antigen content, demonstrating consistent manufacturing process. Recombinant vaccines, unlike therapeutic products, are administered infrequently with only small amounts of protein injected at a time. With limited potential for adverse reactions to small quantities of HCPs in purified recombinant vaccine antigens, and considering the relevant regulatory guidelines, we conclude that once consistent manufacturing process has been demonstrated, routine HCP testing in recombinant vaccine antigens is no longer required.


Assuntos
Expressão Gênica , Antígenos de Superfície da Hepatite B/biossíntese , Vacinas contra Hepatite B/biossíntese , Vírus da Hepatite B/genética , Pichia/metabolismo , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/imunologia , Vacinas contra Hepatite B/genética , Vírus da Hepatite B/imunologia , Pichia/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinas Sintéticas/biossíntese , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
3.
Biochem Biophys Rep ; 4: 329-336, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29124221

RESUMO

Differential Scanning Calorimetry (DSC) has been used in the past to study the thermal unfolding of many different viruses. Here we present the first DSC analysis of rabies virus. We show that non-inactivated, purified rabies virus unfolds cooperatively in two events centered at approximately 62 and 73 °C. Beta-propiolactone (BPL) treatment does not alter significantly viral unfolding behavior, indicating that viral inactivation does not alter protein structure significantly. The first unfolding event was absent in bromelain treated samples, causing an elimination of the G-protein ectodomain, suggesting that this event corresponds to G-protein unfolding. This hypothesis was confirmed by the observation that this first event was shifted to higher temperatures in the presence of three monoclonal, G-protein specific antibodies. We show that dithiothreitol treatment of the virus abolishes the first unfolding event, indicating that the reduction of G-protein disulfide bonds causes dramatic alterations to protein structure. Inactivated virus samples heated up to 70 °C also showed abolished recognition of conformational G-protein specific antibodies by Surface Plasmon Resonance analysis. The sharpness of unfolding transitions and the low standard deviations of the Tm values as derived from multiple analysis offers the possibility of using this analytical tool for efficient monitoring of the vaccine production process and lot to lot consistency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA