Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Am J Hum Genet ; 106(6): 830-845, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32442410

RESUMO

SOX6 belongs to a family of 20 SRY-related HMG-box-containing (SOX) genes that encode transcription factors controlling cell fate and differentiation in many developmental and adult processes. For SOX6, these processes include, but are not limited to, neurogenesis and skeletogenesis. Variants in half of the SOX genes have been shown to cause severe developmental and adult syndromes, referred to as SOXopathies. We here provide evidence that SOX6 variants also cause a SOXopathy. Using clinical and genetic data, we identify 19 individuals harboring various types of SOX6 alterations and exhibiting developmental delay and/or intellectual disability; the individuals are from 17 unrelated families. Additional, inconstant features include attention-deficit/hyperactivity disorder (ADHD), autism, mild facial dysmorphism, craniosynostosis, and multiple osteochondromas. All variants are heterozygous. Fourteen are de novo, one is inherited from a mosaic father, and four offspring from two families have a paternally inherited variant. Intragenic microdeletions, balanced structural rearrangements, frameshifts, and nonsense variants are predicted to inactivate the SOX6 variant allele. Four missense variants occur in residues and protein regions highly conserved evolutionarily. These variants are not detected in the gnomAD control cohort, and the amino acid substitutions are predicted to be damaging. Two of these variants are located in the HMG domain and abolish SOX6 transcriptional activity in vitro. No clear genotype-phenotype correlations are found. Taken together, these findings concur that SOX6 haploinsufficiency leads to a neurodevelopmental SOXopathy that often includes ADHD and abnormal skeletal and other features.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Craniossinostoses/genética , Transtornos do Neurodesenvolvimento/genética , Osteocondroma/genética , Fatores de Transcrição SOXD/genética , Transporte Ativo do Núcleo Celular , Adolescente , Sequência de Aminoácidos , Sequência de Bases , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Criança , Pré-Escolar , Simulação por Computador , Feminino , Variação Estrutural do Genoma/genética , Humanos , Lactente , Masculino , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/diagnóstico , RNA-Seq , Fatores de Transcrição SOXD/química , Fatores de Transcrição SOXD/metabolismo , Síndrome , Transcrição Gênica , Transcriptoma , Translocação Genética/genética
2.
J Med Genet ; 59(11): 1058-1068, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35232796

RESUMO

BACKGROUND: A neurodevelopmental syndrome was recently reported in four patients with SOX4 heterozygous missense variants in the high-mobility-group (HMG) DNA-binding domain. The present study aimed to consolidate clinical and genetic knowledge of this syndrome. METHODS: We newly identified 17 patients with SOX4 variants, predicted variant pathogenicity using in silico tests and in vitro functional assays and analysed the patients' phenotypes. RESULTS: All variants were novel, distinct and heterozygous. Seven HMG-domain missense and five stop-gain variants were classified as pathogenic or likely pathogenic variant (L/PV) as they precluded SOX4 transcriptional activity in vitro. Five HMG-domain and non-HMG-domain missense variants were classified as of uncertain significance (VUS) due to negative results from functional tests. When known, inheritance was de novo or from a mosaic unaffected or non-mosaic affected parent for patients with L/PV, and from a non-mosaic asymptomatic or affected parent for patients with VUS. All patients had neurodevelopmental, neurological and dysmorphic features, and at least one cardiovascular, ophthalmological, musculoskeletal or other somatic anomaly. Patients with L/PV were overall more affected than patients with VUS. They resembled patients with other neurodevelopmental diseases, including the SOX11-related and Coffin-Siris (CSS) syndromes, but lacked the most specific features of CSS. CONCLUSION: These findings consolidate evidence of a fairly non-specific neurodevelopmental syndrome due to SOX4 haploinsufficiency in neurogenesis and multiple other developmental processes.


Assuntos
Deformidades Congênitas da Mão , Deficiência Intelectual , Micrognatismo , Transtornos do Neurodesenvolvimento , Humanos , Micrognatismo/genética , Deformidades Congênitas da Mão/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Síndrome , Fenótipo , DNA , Fatores de Transcrição SOXC/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA