Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063100

RESUMO

The Semliki Forest virus capsid protein (C) is an RNA binding protein which exhibits both specific and unspecific affinities to single-strand nucleic acids. The putative use of the self-amplifying RNAs (saRNAs) of alphaviruses for biotechnological purpose is one of the main studied strategies concerning RNA-based therapies or immunization. In this work, a recombinant C protein from SFV was expressed and purified from bacteria and used to associate in vitro with a saRNA derived from SFV. Results showed that the purified form of C protein can associate with the saRNA even after high temperature treatment. The C protein was associated with a modified saRNA coding for the green fluorescent protein (GFP) and delivered to murine macrophage cells which expressed the GFP, showing that the saRNA was functional after being associated with the recombinant purified C protein.


Assuntos
Proteínas do Capsídeo , Macrófagos , RNA Viral , Proteínas Recombinantes , Vírus da Floresta de Semliki , Vírus da Floresta de Semliki/genética , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Camundongos , Macrófagos/metabolismo , Macrófagos/virologia , Proteínas Recombinantes/genética , RNA Viral/genética , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
2.
Blood ; 137(15): 2070-2084, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33512435

RESUMO

The KIT D816V mutation is found in >80% of patients with systemic mastocytosis (SM) and is key to neoplastic mast cell (MC) expansion and accumulation in affected organs. Therefore, KIT D816V represents a prime therapeutic target for SM. Here, we generated a panel of patient-specific KIT D816V induced pluripotent stem cells (iPSCs) from patients with aggressive SM and mast cell leukemia to develop a patient-specific SM disease model for mechanistic and drug-discovery studies. KIT D816V iPSCs differentiated into neoplastic hematopoietic progenitor cells and MCs with patient-specific phenotypic features, thereby reflecting the heterogeneity of the disease. CRISPR/Cas9n-engineered KIT D816V human embryonic stem cells (ESCs), when differentiated into hematopoietic cells, recapitulated the phenotype observed for KIT D816V iPSC hematopoiesis. KIT D816V causes constitutive activation of the KIT tyrosine kinase receptor, and we exploited our iPSCs and ESCs to investigate new tyrosine kinase inhibitors targeting KIT D816V. Our study identified nintedanib, a US Food and Drug Administration-approved angiokinase inhibitor that targets vascular endothelial growth factor receptor, platelet-derived growth factor receptor, and fibroblast growth factor receptor, as a novel KIT D816V inhibitor. Nintedanib selectively reduced the viability of iPSC-derived KIT D816V hematopoietic progenitor cells and MCs in the nanomolar range. Nintedanib was also active on primary samples of KIT D816V SM patients. Molecular docking studies show that nintedanib binds to the adenosine triphosphate binding pocket of inactive KIT D816V. Our results suggest nintedanib as a new drug candidate for KIT D816V-targeted therapy of advanced SM.


Assuntos
Antineoplásicos/farmacologia , Indóis/farmacologia , Mastocitose Sistêmica/tratamento farmacológico , Mutação Puntual/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-kit/genética , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Mastocitose Sistêmica/genética , Mastocitose Sistêmica/patologia , Células Tumorais Cultivadas
3.
Hematol Oncol ; 41(3): 520-534, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36383121

RESUMO

Prevention of fatal side effects during cancer therapy of cancer patients with high-dosed pharmacological inhibitors is to date a major challenge. Moreover, the development of drug resistance poses severe problems for the treatment of patients with leukemia or solid tumors. Particularly drug-mediated dimerization of RAF kinases can be the cause of acquired resistance, also called "paradoxical activation." In the present work we re-analyzed the effects of different tyrosine kinase inhibitors (TKIs) on the proliferation, metabolic activity, and survival of the Imatinib-resistant, KIT V560G, D816V-expressing human mast cell (MC) leukemia (MCL) cell line HMC-1.2. We observed that low concentrations of the TKIs Nilotinib and Ponatinib resulted in enhanced proliferation, suggesting paradoxical activation of the MAPK pathway. Indeed, these TKIs caused BRAF-CRAF dimerization, resulting in ERK1/2 activation. The combination of Ponatinib with the MEK inhibitor Trametinib, at nanomolar concentrations, effectively suppressed HMC-1.2 proliferation, metabolic activity, and induced apoptotic cell death. Effectiveness of this drug combination was recapitulated in the human KIT D816V MC line ROSAKIT D816V and in KIT D816V hematopoietic progenitors obtained from patient-derived induced pluripotent stem cells (iPS cells) and systemic mastocytosis patient samples. In conclusion, mutated KIT-driven Imatinib resistance and possible TKI-induced paradoxical activation can be efficiently overcome by a low concentration Ponatinib and Trametinib co-treatment, potentially reducing the negative side effects associated with MCL therapy.


Assuntos
Leucemia de Mastócitos , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Leucemia de Mastócitos/metabolismo , Leucemia de Mastócitos/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/farmacologia , Mastócitos/metabolismo , Mastócitos/patologia , Proteínas Proto-Oncogênicas c-kit/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação
4.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982353

RESUMO

Mast cells (MCs) represent a population of hematopoietic cells with a key role in innate and adaptive immunity and are well known for their detrimental role in allergic responses. Yet, MCs occur in low abundance, which hampers their detailed molecular analysis. Here, we capitalized on the potential of induced pluripotent stem (iPS) cells to give rise to all cells in the body and established a novel and robust protocol for human iPS cell differentiation toward MCs. Relying on a panel of systemic mastocytosis (SM) patient-specific iPS cell lines carrying the KIT D816V mutation, we generated functional MCs that recapitulate SM disease features: increased number of MCs, abnormal maturation kinetics and activated phenotype, CD25 and CD30 surface expression and a transcriptional signature characterized by upregulated expression of innate and inflammatory response genes. Therefore, human iPS cell-derived MCs are a reliable, inexhaustible, and close-to-human tool for disease modeling and pharmacological screening to explore novel MC therapeutics.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mastocitose Sistêmica , Humanos , Mastocitose Sistêmica/diagnóstico , Mastócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Mutação
5.
Ann Hematol ; 100(12): 2943-2956, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34390367

RESUMO

Myeloproliferative neoplasms (MPN), comprising essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF), are hematological disorders of the myeloid lineage characterized by hyperproliferation of mature blood cells. The prediction of the clinical course and progression remains difficult and new therapeutic modalities are required. We conducted a CD34+ gene expression study to identify signatures and potential biomarkers in the different MPN subtypes with the aim to improve treatment and prevent the transformation from the rather benign chronic state to a more malignant aggressive state. We report here on a systematic gene expression analysis (GEA) of CD34+ peripheral blood or bone marrow cells derived from 30 patients with MPN including all subtypes (ET (n = 6), PV (n = 11), PMF (n = 9), secondary MF (SMF; post-ET-/post-PV-MF; n = 4)) and six healthy donors. GEA revealed a variety of differentially regulated genes in the different MPN subtypes vs. controls, with a higher number in PMF/SMF (200/272 genes) than in ET/PV (132/121). PROGENγ analysis revealed significant induction of TNFα/NF-κB signaling (particularly in SMF) and reduction of estrogen signaling (PMF and SMF). Consistently, inflammatory GO terms were enriched in PMF/SMF, whereas RNA splicing-associated biological processes were downregulated in PMF. Differentially regulated genes that might be utilized as diagnostic/prognostic markers were identified, such as AREG, CYBB, DNTT, TIMD4, VCAM1, and S100 family members (S100A4/8/9/10/12). Additionally, 98 genes (including CLEC1B, CMTM5, CXCL8, DACH1, and RADX) were deregulated solely in SMF and may be used to predict progression from early to late stage MPN.


Assuntos
Antígenos CD34/genética , Transtornos Mieloproliferativos/genética , Transcriptoma , Regulação Neoplásica da Expressão Gênica , Humanos , Policitemia Vera/genética , Mielofibrose Primária/genética , Trombocitemia Essencial/genética
6.
Biomacromolecules ; 22(2): 454-466, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33284004

RESUMO

Cellulose nanocrystals (CNCs) are unique and promising natural nanomaterials that can be extracted from native cellulose fibers by acid hydrolysis. In this study, we developed chemically modified CNC derivatives by covalent tethering of PEGylated biotin and perylenediimide (PDI)-based near-infrared organic dye and evaluated their suitability for labeling and imaging of different cell lines including J774A.1 macrophages, NIH-3T3 fibroblasts, HeLa adenocarcinoma cells, and primary murine dendritic cells. PDI-labeled CNCs showed a superior photostability compared to similar commercially available dyes under long periods of constant and high-intensity illumination. All CNC derivatives displayed excellent cytocompatibility toward all cell types and efficiently labeled cells in a dose-dependent manner. Moreover, CNCs were effectively internalized and localized in the cytoplasm around perinuclear areas. Thus, our findings demonstrate the suitability of these new CNC derivatives for labeling, imaging, and long-time tracking of a variety of cell lines and primary cells.


Assuntos
Nanopartículas , Nanoestruturas , Animais , Celulose , Células HeLa , Humanos , Camundongos
8.
Biochim Biophys Acta ; 1854(10 Pt A): 1372-81, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26049080

RESUMO

The intriguing roles of the bacterial Tol-Pal trans-envelope protein complex range from maintenance of cell envelope integrity to potential participation in the process of cell division. In this study, we report the characterization of the XfTolB and XfPal proteins of the Tol-Pal complex of Xylella fastidiosa. X. fastidiosa is a major plant pathogen that forms biofilms inside xylem vessels, triggering the development of diseases in important cultivable plants around the word. Based on functional complementation experiments in Escherichia coli tolB and pal mutant strains, we confirmed the role of xftolB and xfpal in outer membrane integrity. In addition, we observed a dynamic and coordinated protein expression profile during the X. fastidiosa biofilm development process. Using small-angle X-ray scattering (SAXS), the low-resolution structure of the isolated XfTolB-XfPal complex in solution was solved for the first time. Finally, the localization of the XfTolB and XfPal polar ends was visualized via immunofluorescence labeling in vivo during bacterial cell growth. Our results highlight the major role of the components of the cell envelope, particularly the TolB-Pal complex, during the different phases of bacterial biofilm development.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Biofilmes/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Regulação Bacteriana da Expressão Gênica , Lipoproteínas/química , Peptidoglicano/química , Proteínas Periplásmicas/química , Xylella/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Parede Celular/genética , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Teste de Complementação Genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Modelos Moleculares , Peptidoglicano/genética , Peptidoglicano/metabolismo , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Difração de Raios X , Xylella/metabolismo , Xylella/ultraestrutura
9.
Protein Expr Purif ; 113: 72-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25979465

RESUMO

The Xylella fastidiosa 9a5c strain is a xylem-limited phytopathogen that is the causal agent of citrus variegated chlorosis (CVC). This bacterium is able to form a biofilm and occlude the xylem vessels of susceptible plants, which leads to significant agricultural and economic losses. Biofilms are associated with bacterial pathogenicity because they are very resistant to antibiotics and other metal-based chemicals that are used in agriculture. The X. fastidiosa YcjZ-like (XfYcjZ-like) protein belongs to the LysR-type transcriptional regulator (LTTR) family and is involved in various cellular functions that range from quorum sensing to bacterial survival. In the present study, we report the cloning, expression and purification of XfYcjZ-like, which was overexpressed in Escherichia coli. The secondary folding of the recombinant and purified protein was assessed by circular dichroism, which revealed that XfYcjZ-like contains a typical α/ß fold. An initial hydrodynamic characterization showed that XfYcjZ-like is a globular tetramer in solution. In addition, using a polyclonal antibody against XfYcjZ-like, we assessed the expression profile of this protein during the different developmental phases of X. fastidiosa in in vitro cultivated biofilm cells and demonstrated that XfYcjZ-like is upregulated in planktonic cells in response to a copper shock treatment. Finally, the ability of XfYcjZ-like to interact with its own predicted promoter was confirmed in vitro, which is a typical feature of LysR. Taken together, our findings indicated that the XfYcjZ-like protein is involved in both the organization of the architecture and the maturation of the bacterial biofilm and that it is responsive to oxidative stress.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Proteínas Recombinantes/química , Fatores de Transcrição/química , Xylella/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Cobre/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Dados de Sequência Molecular , Estresse Oxidativo/efeitos dos fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo , Xylella/efeitos dos fármacos
10.
Cancer Res ; 84(18): 2985-3003, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38885318

RESUMO

Increasing evidence supports the interplay between oncogenic mutations and immune escape mechanisms. Strategies to counteract the immune escape mediated by oncogenic signaling could provide improved therapeutic options for patients with various malignancies. As mutant calreticulin (CALR) is a common driver of myeloproliferative neoplasms (MPN), we analyzed the impact of oncogenic CALRdel52 on the bone marrow (BM) microenvironment in MPN. Single-cell RNA sequencing revealed that CALRdel52 led to the expansion of TGFß1-producing erythroid progenitor cells and promoted the expansion of FoxP3+ regulatory T cells (Treg) in a murine MPN model. Treatment with an anti-TGFß antibody improved mouse survival and increased the glycolytic activity in CD4+ and CD8+ T cells in vivo, whereas T-cell depletion abrogated the protective effects conferred by neutralizing TGFß. TGFß1 reduced perforin and TNFα production by T cells in vitro. TGFß1 production by CALRdel52 cells was dependent on JAK1/2, PI3K, and ERK activity, which activated the transcription factor Sp1 to induce TGFß1 expression. In four independent patient cohorts, TGFß1 expression was increased in the BM of patients with MPN compared with healthy individuals, and the BM of patients with MPN contained a higher frequency of Treg compared with healthy individuals. Together, this study identified an ERK/Sp1/TGFß1 axis in CALRdel52 MPNs as a mechanism of immunosuppression that can be targeted to elicit T-cell-mediated cytotoxicity. Significance: Targeting the mutant calreticulin/TGFß1 axis increases T-cell activity and glycolytic capacity, providing the rationale for conducting clinical trials on TGFß antagonists as an immunotherapeutic strategy in patients with myeloproliferative neoplasms.


Assuntos
Calreticulina , Transtornos Mieloproliferativos , Linfócitos T Reguladores , Microambiente Tumoral , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Calreticulina/metabolismo , Animais , Humanos , Camundongos , Transtornos Mieloproliferativos/imunologia , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia , Microambiente Tumoral/imunologia , Fator de Crescimento Transformador beta/metabolismo , Medula Óssea/imunologia , Medula Óssea/metabolismo , Evasão Tumoral/imunologia , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta1/metabolismo , Mutação
11.
Stem Cell Reports ; 19(2): 224-238, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38278152

RESUMO

The myeloproliferative disease polycythemia vera (PV) driven by the JAK2 V617F mutation can transform into myelofibrosis (post-PV-MF). It remains an open question how JAK2 V617F in hematopoietic stem cells induces MF. Megakaryocytes are major players in murine PV models but are difficult to study in the human setting. We generated induced pluripotent stem cells (iPSCs) from JAK2 V617F PV patients and differentiated them into megakaryocytes. In differentiation assays, JAK2 V617F iPSCs recapitulated the pathognomonic skewed megakaryocytic and erythroid differentiation. JAK2 V617F iPSCs had a TPO-independent and increased propensity to differentiate into megakaryocytes. RNA sequencing of JAK2 V617F iPSC-derived megakaryocytes reflected a proinflammatory, profibrotic phenotype and decreased ribosome biogenesis. In three-dimensional (3D) coculture, JAK2 V617F megakaryocytes induced a profibrotic phenotype through direct cell contact, which was reversed by the JAK2 inhibitor ruxolitinib. The 3D coculture system opens the perspective for further disease modeling and drug discovery.


Assuntos
Células-Tronco Pluripotentes Induzidas , Policitemia Vera , Humanos , Camundongos , Animais , Medula Óssea/patologia , Megacariócitos , Janus Quinase 2/genética , Policitemia Vera/genética , Policitemia Vera/patologia , Fenótipo , Fibrose , Mutação
12.
Microb Pathog ; 59-60: 1-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23474016

RESUMO

The 5'-nucleotidases constitute a ubiquitous family of enzymes that catalyze either the hydrolysis or the transfer of esterified phosphate at the 5' position of nucleoside monophosphates. These enzymes are responsible for the regulation of nucleotide and nucleoside levels in the cell and can interfere with the phosphorylation-dependent activation of nucleoside analogs used in therapies targeting solid tumors and viral infections. In the present study, we report the initial biochemical and functional characterization of a 5'-nucleotidase from Xylella fastidiosa that is related to the human cytosolic 5'-nucleotidase I. X. fastidiosa is a plant pathogenic bacterium that is responsible for numerous economically important crop diseases. Biochemical assays confirmed the phosphatase activity of the recombinant purified enzyme and revealed metal ion dependence for full enzyme activity. In addition, we investigated the involvement of Xf5'-Nt in the formation of X. fastidiosa biofilms, which are structures that occlude the xylem vessels of susceptible plants and are strictly associated with bacterial pathogenesis. Using polyclonal antibodies against Xf5'-Nt, we observed an overexpression of Xf5'-Nt during the initial phases of X. fastidiosa biofilm formation that was not observed during X. fastidiosa planktonic growth. Our results demonstrate that the de/phosphorylation network catalyzed by 5'-nucleotidases may play an important role in bacterial biofilm formation, thereby contributing novel insights into bacterial nucleotide metabolism and pathogenicity.


Assuntos
5'-Nucleotidase/metabolismo , Xylella/enzimologia , 5'-Nucleotidase/genética , 5'-Nucleotidase/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Coenzimas/metabolismo , Perfilação da Expressão Gênica , Metais/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/isolamento & purificação , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Xylella/fisiologia
13.
Protein Expr Purif ; 91(2): 175-83, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23973866

RESUMO

A novel epoxide hydrolase from Aspergillus brasiliensis CCT1435 (AbEH) was cloned and overexpressed in Escherichia coli cells with a 6xHis-tag and purified by nickel affinity chromatography. Gel filtration analysis and circular dichroism measurements indicated that this novel AbEH is a homodimer in aqueous solution and contains the typical secondary structure of an α/ß hydrolase fold. The activity of AbEH was initially assessed using the fluorogenic probe O-(3,4-epoxybutyl) umbelliferone and was active in a broad range of pH (6-9) and temperature (25-45°C); showing optimum performance at pH 6.0 and 30°C. The Michaelis constant (KM) and maximum rate (Vmax) values were 495µM and 0.24µM/s, respectively. Racemic styrene oxide (SO) was used as a substrate to assess the AbEH activity and enantioselectivity, and 66% of the SO was hydrolyzed after only 5min of reaction, with the remaining (S)-SO ee exceeding 99% in a typical kinetic resolution behavior. The AbEH-catalyzed hydrolysis of SO was also evaluated in a biphasic system of water:isooctane; (R)-diol in 84% ee and unreacted (S)-SO in 36% ee were produced, with 43% conversion in 24h, indicating a discrete enantioconvergent behavior for AbEH. This novel epoxide hydrolase has biotechnological potential for the preparation of enantiopure epoxides or vicinal diols.


Assuntos
Aspergillus/enzimologia , Epóxido Hidrolases/química , Proteínas Fúngicas/química , Proteínas Recombinantes de Fusão/química , Sequência de Aminoácidos , Aspergillus/genética , Cromatografia de Afinidade , Dicroísmo Circular , Epóxido Hidrolases/genética , Epóxido Hidrolases/isolamento & purificação , Epóxido Hidrolases/metabolismo , Compostos de Epóxi/química , Escherichia coli/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Histidina/genética , Hidrólise , Dados de Sequência Molecular , Oligopeptídeos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Estereoisomerismo
14.
Elife ; 122023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36916882

RESUMO

Transcription factors play a determining role in lineage commitment and cell differentiation. Interferon regulatory factor 8 (IRF8) is a lineage determining transcription factor in hematopoiesis and master regulator of dendritic cells (DC), an important immune cell for immunity and tolerance. IRF8 is prominently upregulated in DC development by autoactivation and controls both DC differentiation and function. However, it is unclear how Irf8 autoactivation is controlled and eventually limited. Here, we identified a novel long non-coding RNA transcribed from the +32 kb enhancer downstream of Irf8 transcription start site and expressed specifically in mouse plasmacytoid DC (pDC), referred to as lncIrf8. The lncIrf8 locus interacts with the lrf8 promoter and shows differential epigenetic signatures in pDC versus classical DC type 1 (cDC1). Interestingly, a sequence element of the lncIrf8 promoter, but not lncIrf8 itself, is crucial for mouse pDC and cDC1 differentiation, and this sequence element confers feedback inhibition of Irf8 expression. Taken together, in DC development Irf8 autoactivation is first initiated by flanking enhancers and then second controlled by feedback inhibition through the lncIrf8 promoter element in the +32 kb enhancer. Our work reveals a previously unrecognized negative feedback loop of Irf8 that orchestrates its own expression and thereby controls DC differentiation.


Assuntos
RNA Longo não Codificante , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Retroalimentação , Fatores Reguladores de Interferon/metabolismo , Diferenciação Celular/fisiologia , Elementos Facilitadores Genéticos , Células Dendríticas
15.
Front Oncol ; 13: 1277453, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941547

RESUMO

Imetelstat shows activity in patients with myeloproliferative neoplasms, including primary myelofibrosis (PMF) and essential thrombocythemia. Here, we describe a case of prolonged disease stabilization by imetelstat treatment of a high-risk PMF patient enrolled into the clinical study MYF2001. We confirmed continuous shortening of telomere length (TL) by imetelstat treatment but observed emergence and expansion of a KRAST58I mutated clone during the patient's clinical course. In order to investigate the molecular mechanisms involved in the imetelstat treatment response, we generated induced pluripotent stem cells (iPSC) from this patient. TL of iPSC-derived hematopoietic stem and progenitor cells, which was increased after reprogramming, was reduced upon imetelstat treatment for 14 days. However, while imetelstat reduced clonogenic growth of the patient's primary CD34+ cells, clonogenic growth of iPSC-derived CD34+ cells was not affected, suggesting that TL was not critically short in these cells. Also, the propensity of iPSC differentiation toward megakaryocytes and granulocytes was not altered. Using human TF-1MPL and murine 32DMPL cell lines stably expressing JAK2V617F or CALRdel52, imetelstat-induced reduction of viability was significantly more pronounced in CALRdel52 than in JAK2V617F cells. This was associated with an immediate downregulation of JAK2 phosphorylation and downstream signaling as well as a reduction of hTERT and STAT3 mRNA expression. Hence, our data demonstrate that imetelstat reduces TL and targets JAK/STAT signaling, particularly in CALR-mutated cells. Although the exact patient subpopulation who will benefit most from imetelstat needs to be defined, our data propose that CALR-mutated clones are highly vulnerable.

16.
Protein Expr Purif ; 82(2): 284-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22306742

RESUMO

Xylella fastidiosa is a Gram-negative xylem-limited plant pathogenic bacterium responsible for several economically important crop diseases. Here, we present a novel and efficient protein refolding protocol for the solubilization and purification of recombinant X. fastidiosa peptidoglycan-associated lipoprotein (XfPal). Pal is an outer membrane protein that plays important roles in maintaining the integrity of the cell envelope and in bacterial pathogenicity. Because Pal has a highly hydrophobic N-terminal domain, the heterologous expression studies necessary for structural and functional protein characterization are laborious once the recombinant protein is present in inclusion bodies. Our protocol based on the denaturation of the XfPal-enriched inclusion bodies with 8M urea followed by buffer-exchange steps via dialysis proved effective for the solubilization and subsequent purification of XfPal, allowing us to obtain a large amount of relatively pure and folded protein. In addition, XfPal was biochemically and functionally characterized. The method for purification reported herein is valuable for further research on the three-dimensional structure and function of Pal and other outer membrane proteins and can contribute to a better understanding of the role of these proteins in bacterial pathogenicity, especially with regard to the plant pathogen X. fastidiosa.


Assuntos
Proteínas de Bactérias/química , Escherichia coli , Lipoproteínas/química , Peptidoglicano/química , Redobramento de Proteína , Xylella , Sequência de Aminoácidos , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/isolamento & purificação , Cromatografia em Gel , Lipoproteínas/biossíntese , Lipoproteínas/isolamento & purificação , Dados de Sequência Molecular , Peptidoglicano/biossíntese , Peptidoglicano/isolamento & purificação , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Solubilidade
17.
Trends Mol Med ; 28(11): 902-905, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36064534

RESUMO

Mast cells have been implicated as mediators of bone marrow fibrosis and pruritus in myeloproliferative neoplasms (MPNs) with JAK2V617F or calreticulin mutations. We hypothesize that potent KIT inhibitors, already in clinical use for systemic mastocytosis, have therapeutic potential for the treatment of MPNs by directly targeting mast cells.


Assuntos
Mastocitose Sistêmica , Transtornos Mieloproliferativos , Humanos , Mastócitos , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Mastocitose Sistêmica/tratamento farmacológico , Mastocitose Sistêmica/genética , Mutação
18.
Stem Cell Res ; 60: 102732, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35279545

RESUMO

The receptor tyrosine kinase c-KIT (CD117) has a key role in hematopoiesis and is a marker for endothelial and cardiac progenitor cells. In vivo, deficiency of c-KIT is lethal and therefore using CRISPR/Cas9 editing we generated heterozygous and homozygous c-KIT knockout human embryonic stem cell (ES cell) lines. The c-KIT knockout left ES cell pluripotency unaffected as shown by immunofluorescence and trilineage differentiation potential. Heterozygous and homozygous c-KIT knockouts showed complete loss of exon 17, resulting in ablation of c-KIT protein from the cell surface. c-KIT knockout ES cells provide a valuable tool for further investigating c-KIT biology.


Assuntos
Células-Tronco Embrionárias Humanas , Sistemas CRISPR-Cas/genética , Linhagem Celular , Heterozigoto , Homozigoto , Células-Tronco Embrionárias Humanas/metabolismo , Humanos
19.
Sci Rep ; 12(1): 2333, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149687

RESUMO

Bone defects stand out as one of the greatest challenges of reconstructive surgery. Fused deposition modelling (FDM) allows for the printing of 3D scaffolds tailored to the morphology and size of bone damage in a patient-specific and high-precision manner. However, FDM still suffers from the lack of materials capable of efficiently supporting osteogenesis. In this study, we developed 3D-printed porous scaffolds composed of polylactic acid/hydroxyapatite (PLA/HA) composites with high ceramic contents (above 20%, w/w) by FDM. The mechanical properties of the PLA/HA scaffolds were compatible with those of trabecular bone. In vitro degradation tests revealed that HA can neutralize the acidification effect caused by PLA degradation, while simultaneously releasing calcium and phosphate ions. Importantly, 3D-printed PLA/HA did not induce the upregulation of activation markers nor the expression of inflammatory cytokines in dendritic cells thus exhibiting no immune-stimulatory properties in vitro. Evaluations using human mesenchymal stem cells (MSC) showed that pure PLA scaffolds exerted an osteoconductive effect, whereas PLA/HA scaffolds efficiently induced osteogenic differentiation of MSC even in the absence of any classical osteogenic stimuli. Our findings indicate that 3D-printed PLA scaffolds loaded with high concentrations of HA are most suitable for future applications in bone tissue engineering.


Assuntos
Materiais Biocompatíveis/farmacologia , Células Dendríticas/imunologia , Durapatita/farmacologia , Células-Tronco Mesenquimais/citologia , Osteogênese , Poliésteres/farmacologia , Alicerces Teciduais , Adulto , Idoso , Animais , Fenômenos Biomecânicos , Cálcio/metabolismo , Células Cultivadas , Durapatita/imunologia , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Osteogênese/efeitos dos fármacos , Impressão Tridimensional
20.
Biomaterials ; 282: 121389, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35121357

RESUMO

Colonies of induced pluripotent stem cells (iPSCs) reveal aspects of self-organization even under culture conditions that maintain pluripotency. To investigate the dynamics of this process under spatial confinement, we used either polydimethylsiloxane (PDMS) pillars or micro-contact printing of vitronectin. There was a progressive upregulation of OCT4, E-cadherin, and NANOG within 70 µm from the outer rim of iPSC colonies. Single-cell RNA-sequencing and spatial reconstruction of gene expression demonstrated that OCT4high subsets, residing at the edge of the colony, have pronounced up-regulation of the TGF-ß pathway, particularly of NODAL and its inhibitor LEFTY. Interestingly, after 5-7 days, iPSC colonies detached spontaneously from micro-contact printed substrates to form 3D aggregates. This new method allowed generation of embryoid bodies (EBs) of controlled size without enzymatic or mechanical treatment. Within the early 3D aggregates, radial organization and differential gene expression continued in analogy to the changes observed during self-organization of iPSC colonies. Early self-detached aggregates revealed up-regulated germline-specific gene expression patterns as compared to conventional EBs. However, there were no marked differences after further directed differentiation toward hematopoietic, mesenchymal, and neuronal lineages. Our results provide further insight into the gradual self-organization within iPSC colonies and at their transition into EBs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular/fisiologia , Corpos Embrioides/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA