Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Brain ; 144(3): 963-974, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33484116

RESUMO

Tau is a microtubule stabilizing protein that forms abnormal aggregates in many neurodegenerative disorders, including Alzheimer's disease. We have previously shown that co-expression of fragmented and full-length tau in P301SxTAU62on tau transgenic mice results in the formation of oligomeric tau species and causes severe paralysis. This paralysis is fully reversible once expression of the tau fragment is halted, even though P301S tau expression is maintained. Whereas various strategies to target tau aggregation have been developed, little is known about the long-term consequences of reverted tau toxicity. Therefore, we studied the long-term motor fitness of recovered, formerly paralysed P301SxTAU62on-off mice. To assess the seeding competence of oligomeric toxic tau species, we also inoculated ALZ17 mice with brainstem homogenates from paralysed P301SxTAU62on mice. Counter-intuitively, after recovery from paralysis due to oligomeric tau species expression, ageing P301SxTAU62on-off mice did not develop more motor impairment or tau pathology when compared to heterozygous P301S tau transgenic littermates. Thus, toxic tau species causing extensive neuronal dysfunction can be cleared without inducing seeding effects. Moreover, these toxic tau species also lack long-term tau seeding effects upon intrahippocampal inoculation into ALZ17 mice. In conclusion, tau species can be neurotoxic in the absence of seeding-competent tau aggregates, and mice can clear these tau forms permanently without tau seeding or spreading effects. These observations suggest that early targeting of non-fibrillar tau species may represent a therapeutically effective intervention in tauopathies. On the other hand, the absent seeding competence of early toxic tau species also warrants caution when using seeding-based tests for preclinical tauopathy diagnostics.


Assuntos
Tauopatias/patologia , Proteínas tau/metabolismo , Proteínas tau/toxicidade , Animais , Humanos , Camundongos , Camundongos Transgênicos
2.
Alzheimers Dement ; 18(12): 2481-2492, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35142027

RESUMO

Abnormal tau protein aggregates constitute a hallmark of Alzheimer's disease. The mechanisms underlying the initiation of tau aggregation in sporadic neurodegeneration remain unclear. Here we investigate whether a non-human prion can seed tau aggregation. Due to their structural similarity with tau aggregates, we chose Sup35NM yeast prion domain fibrils for explorative tau seedings. Upon in vitro incubation with tau monomers, Sup35NM fibrils promoted the formation of morphologically distinct tau fibril strains. In vivo, intrahippocampal inoculation of Sup35NM fibrils accentuated tau pathology in P301S tau transgenic mice. Thus, our results provide first in vivo evidence for heterotypic cross-species seeding of a neurodegenerative human prion-like protein by a yeast prion. This opens up the conceptual perspective that non-mammalian prions present in the human microbiome could be involved in the initiation of protein misfolding in neurodegenerative disorders, a mechanism for which we propose the term "trans-seeding."


Assuntos
Doença de Alzheimer , Príons , Tauopatias , Camundongos , Animais , Humanos , Proteínas tau/metabolismo , Príons/metabolismo , Doença de Alzheimer/metabolismo , Tauopatias/patologia , Saccharomyces cerevisiae/metabolismo , Camundongos Transgênicos
3.
J Pathol ; 250(1): 19-29, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31471895

RESUMO

In non-small cell lung cancer (NSCLC), immune checkpoint inhibitors (ICIs) significantly improve overall survival (OS). Tumor mutational burden (TMB) has emerged as a predictive biomarker for patients treated with ICIs. Here, we evaluated the predictive power of TMB measured by the Oncomine™ Tumor Mutational Load targeted sequencing assay in 76 NSCLC patients treated with ICIs. TMB was assessed retrospectively in 76 NSCLC patients receiving ICI therapy. Clinical data (RECIST 1.1) were collected and patients were classified as having either durable clinical benefit (DCB) or no durable benefit (NDB). Additionally, genetic alterations and PD-L1 expression were assessed and compared with TMB and response rate. TMB was significantly higher in patients with DCB than in patients with NDB (median TMB = 8.5 versus 6.0 mutations/Mb, Mann-Whitney p = 0.0244). 64% of patients with high TMB (cut-off = third tertile, TMB ≥ 9) were responders (DCB) compared to 33% and 29% of patients with intermediate and low TMB, respectively (cut-off = second and first tertile, TMB = 5-9 and TMB ≤ 4, respectively). TMB-high patients showed significantly longer progression-free survival (PFS) and OS (log-rank test p = 0.0014 for PFS and 0.0197 for OS). While identifying different subgroups of patients, combining PD-L1 expression and TMB increased the predictive power (from AUC 0.63 to AUC 0.65). Our results show that the TML panel is an effective tool to stratify patients for ICI treatment. A combination of biomarkers might maximize the predictive precision for patient stratification. Our study supports TMB evaluation through targeted NGS in NSCLC patient samples as a tool to predict response to ICI therapy. We offer recommendations for a reliable and cost-effective assessment of TMB in a routine diagnostic setting. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Pulmonares/genética , Mutação , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Tomada de Decisão Clínica , Feminino , Predisposição Genética para Doença , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Seleção de Pacientes , Fenótipo , Medicina de Precisão , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Suíça
4.
Histopathology ; 77(2): 198-209, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32364264

RESUMO

AIMS: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly evolved into a sweeping pandemic. Its major manifestation is in the respiratory tract, and the general extent of organ involvement and the microscopic changes in the lungs remain insufficiently characterised. Autopsies are essential to elucidate COVID-19-associated organ alterations. METHODS AND RESULTS: This article reports the autopsy findings of 21 COVID-19 patients hospitalised at the University Hospital Basel and at the Cantonal Hospital Baselland, Switzerland. An in-corpore technique was performed to ensure optimal staff safety. The primary cause of death was respiratory failure with exudative diffuse alveolar damage and massive capillary congestion, often accompanied by microthrombi despite anticoagulation. Ten cases showed superimposed bronchopneumonia. Further findings included pulmonary embolism (n = 4), alveolar haemorrhage (n = 3), and vasculitis (n = 1). Pathologies in other organ systems were predominantly attributable to shock; three patients showed signs of generalised and five of pulmonary thrombotic microangiopathy. Six patients were diagnosed with senile cardiac amyloidosis upon autopsy. Most patients suffered from one or more comorbidities (hypertension, obesity, cardiovascular diseases, and diabetes mellitus). Additionally, there was an overall predominance of males and individuals with blood group A (81% and 65%, respectively). All relevant histological slides are linked as open-source scans in supplementary files. CONCLUSIONS: This study provides an overview of postmortem findings in COVID-19 cases, implying that hypertensive, elderly, obese, male individuals with severe cardiovascular comorbidities as well as those with blood group A may have a lower threshold of tolerance for COVID-19. This provides a pathophysiological explanation for higher mortality rates among these patients.


Assuntos
COVID-19/patologia , Capilares/patologia , Doenças Vasculares/patologia , Doenças Vasculares/virologia , Idoso , Idoso de 80 Anos ou mais , Autopsia , Capilares/virologia , Feminino , Humanos , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2
5.
Acta Neuropathol ; 138(6): 943-970, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31456031

RESUMO

Granulovacuolar degeneration bodies (GVBs) are membrane-bound vacuolar structures harboring a dense core that accumulate in the brains of patients with neurodegenerative disorders, including Alzheimer's disease and other tauopathies. Insight into the origin of GVBs and their connection to tau pathology has been limited by the lack of suitable experimental models for GVB formation. Here, we used confocal, automated, super-resolution and electron microscopy to demonstrate that the seeding of tau pathology triggers the formation of GVBs in different mouse models in vivo and in primary mouse neurons in vitro. Seeding-induced intracellular tau aggregation, but not seed exposure alone, causes GVB formation in cultured neurons, but not in astrocytes. The extent of tau pathology strongly correlates with the GVB load. Tau-induced GVBs are immunoreactive for the established GVB markers CK1δ, CK1ɛ, CHMP2B, pPERK, peIF2α and pIRE1α and contain a LAMP1- and LIMP2-positive single membrane that surrounds the dense core and vacuole. The proteolysis reporter DQ-BSA is detected in the majority of GVBs, demonstrating that GVBs contain degraded endocytic cargo. GFP-tagged CK1δ accumulates in the GVB core, whereas GFP-tagged tau or GFP alone does not, indicating selective targeting of cytosolic proteins to GVBs. Taken together, we established the first in vitro model for GVB formation by seeding tau pathology in primary neurons. The tau-induced GVBs have the marker signature and morphological characteristics of GVBs in the human brain. We show that GVBs are lysosomal structures distinguished by the accumulation of a characteristic subset of proteins in a dense core.


Assuntos
Lisossomos/patologia , Neurônios/patologia , Tauopatias/patologia , Vacúolos/patologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Feminino , Humanos , Lisossomos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Tauopatias/metabolismo , Vacúolos/metabolismo , Proteínas tau/genética
6.
Biochim Biophys Acta ; 1857(8): 1267-1276, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26997499

RESUMO

During apoptosis mitochondria undergo cristae remodeling and fragmentation, but how the latter relates to outer membrane permeabilization and downstream caspase activation is unclear. Here we show that the mitochondrial fission protein Dynamin Related Protein (Drp) 1 participates in cytochrome c release by selected intrinsic death stimuli. While Bax, Bak double deficient (DKO) and Apaf1(-/-) mouse embryonic fibroblasts (MEFs) were less susceptible to apoptosis by Bcl-2 family member BID, H(2)O(2), staurosporine and thapsigargin, Drp1(-/-) MEFs were protected only from BID and H(2)O(2). Resistance to cell death of Drp1(-/-) and DKO MEFs correlated with blunted cytochrome c release, whereas mitochondrial fragmentation occurred in all cell lines in response to all tested stimuli, indicating that other mechanisms accounted for the reduced cytochrome c release. Indeed, cristae remodeling was reduced in Drp1(-/-) cells, potentially explaining their resistance to apoptosis. Our results indicate that caspase-independent mitochondrial fission and Drp1-dependent cristae remodeling amplify apoptosis. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Assuntos
Apoptose/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Dinaminas/genética , Fibroblastos/metabolismo , Dinâmica Mitocondrial/genética , Animais , Apoptose/efeitos dos fármacos , Fator Apoptótico 1 Ativador de Proteases/deficiência , Fator Apoptótico 1 Ativador de Proteases/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Linhagem Celular , Citocromos c/metabolismo , Dinaminas/deficiência , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica , Peróxido de Hidrogênio/farmacologia , Camundongos , Camundongos Knockout , Dinâmica Mitocondrial/efeitos dos fármacos , Estresse Oxidativo , Transdução de Sinais , Estaurosporina/farmacologia , Tapsigargina/farmacologia , Proteína Killer-Antagonista Homóloga a bcl-2/deficiência , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/deficiência , Proteína X Associada a bcl-2/genética
7.
Neurodegener Dis ; 17(6): 261-275, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28810250

RESUMO

BACKGROUND/AIMS: Cerebral small vessel disease (SVD) is characterized by periventricular white matter (WM) changes and can lead to vascular dementia, the second most common form of age-dependent dementia. The pathogenesis of the disease remains poorly understood, and studies of its molecular basis are limited. By profiling gene expression of dissected postmortem brain tissue in SVD patients and comparisons with tissue of nonneurological controls, we aimed to identify genes and processes that are involved in the pathogenesis of SVD to gain new pathogenetic insights. METHODS: We performed genome-wide expression analyses in postmortem brain tissue samples dissected from frontal, temporal, and occipital lobes as well as basal nuclei comprising thalamus, basal ganglia, and hippocampus from 5 SVD cases and 5 nonaffected control cases. Cellular pathways associated with differently expressed genes were identified in each brain region individually. RESULTS: This analysis disclosed regional differences, with frontal lobe and thalamus showing the highest numbers of genes with significantly altered expression. Biological functions and pathways associated with changed gene expression depicted brain area-specific defective pathways. Vessel-associated functions, such as increased extracellular matrix-receptor interactions and cell adhesion molecules, were enhanced in all regions. Inflammation and apoptosis were induced particularly in basal nuclei and temporal and occipital regions. Interestingly, genes associated with the ubiquitin-dependent proteolysis (ubiquitin proteasome system) pathway were downregulated in the frontal lobe and in the thalamus, leading to the formation of protein aggregates. CONCLUSION: This analysis deciphers brain region-specific molecular processes to increase the present knowledge of SVD pathology and determine new potential therapeutic targets.


Assuntos
Encéfalo/metabolismo , Doenças de Pequenos Vasos Cerebrais/patologia , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Regulação da Expressão Gênica/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Autopsia , Encéfalo/patologia , Feminino , Expressão Gênica/fisiologia , Humanos , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/fisiologia , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteínas tau/metabolismo
8.
Proc Natl Acad Sci U S A ; 110(23): 9535-40, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23690619

RESUMO

Filamentous inclusions made of hyperphosphorylated tau are characteristic of numerous human neurodegenerative diseases, including Alzheimer's disease, tangle-only dementia, Pick disease, argyrophilic grain disease (AGD), progressive supranuclear palsy, and corticobasal degeneration. In Alzheimer's disease and AGD, it has been shown that filamentous tau appears to spread in a stereotypic manner as the disease progresses. We previously demonstrated that the injection of brain extracts from human mutant P301S tau-expressing transgenic mice into the brains of mice transgenic for wild-type human tau (line ALZ17) resulted in the assembly of wild-type human tau into filaments and the spreading of tau inclusions from the injection sites to anatomically connected brain regions. Here we injected brain extracts from humans who had died with various tauopathies into the hippocampus and cerebral cortex of ALZ17 mice. Argyrophilic tau inclusions formed in all cases and following the injection of the corresponding brain extracts, we recapitulated the hallmark lesions of AGD, PSP and CBD. Similar inclusions also formed after intracerebral injection of brain homogenates from human tauopathies into nontransgenic mice. Moreover, the induced formation of tau aggregates could be propagated between mouse brains. These findings suggest that once tau aggregates have formed in discrete brain areas, they become self-propagating and spread in a prion-like manner.


Assuntos
Encéfalo/metabolismo , Tauopatias/fisiopatologia , Extratos de Tecidos/farmacologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Western Blotting , Encéfalo/patologia , Cruzamentos Genéticos , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Extratos de Tecidos/administração & dosagem , Transplante Heterólogo , Proteínas tau/genética
9.
Acta Neuropathol ; 129(5): 749-56, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25628035

RESUMO

It has been proposed that tau aggregation confined to entorhinal cortex and hippocampus, with no or only minimal Aß deposition, should be considered as a 'primary age-related tauopathy' (PART) that is not integral to the continuum of sporadic Alzheimer disease (AD). Here, we examine the evidence that PART has a pathogenic mechanism and a prognosis which differ from those of AD. We contend that no specific property of the entorhinal-hippocampal tau pathology makes it possible to predict either a limited progression or the development of AD, and that biochemical differences await an evidence base. On the other hand, entorhinal-hippocampal tau pathology is an invariant feature of AD and is always associated with its development. Rather than creating a separate disease entity, we recommend the continued use of an analytical approach based on NFT stages and Aß phases with no inference about hypothetical disease processes.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/metabolismo , Tauopatias/diagnóstico , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Diagnóstico Diferencial , Progressão da Doença , Córtex Entorrinal/patologia , Hipocampo/patologia , Humanos , Tauopatias/metabolismo , Tauopatias/patologia
11.
Neurol Sci ; 36(2): 323-30, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25213617

RESUMO

Retinal vasculopathy with cerebral leukodystrophy (RVCL) is an adult-onset disorder caused by C-terminal heterozygous frameshift (fs) mutations in the human 3'-5' DNA exonuclease TREX1. Hereditary systemic angiopathy (HSA) is considered a variant of RVCL with systemic involvement of unknown genetic cause, described in a unique family so far. Here we describe the second case of RVCL with systemic involvement, characterized by cerebral calcifications and pseudotumoral lesions, retinopathy, osteonecrosis, renal and hepatic failure. The genetic screening of TREX1 in this patient revealed the novel heterozygous T270fs mutation on the C-terminal region. On the same gene, we found the V235fs mutation, formerly shown in RVCL, in one patient previously reported with HSA. These mutations lead to important alterations of the C-terminal of the protein, with the loss of the transmembrane helix (T270fs) and the insertion of a premature stop codon, resulting in a truncated protein (V235fs). Functional analysis of T270fs-mutated fibroblasts showed a prevalent localization of the protein in the cytosol, rather than in the perinuclear region. RVCL with systemic involvement is an extremely rare condition, whose diagnosis is complex due to multiorgan manifestations, unusual radiological and histopathological findings, not easily attributable to a single disease. It should be suspected in young adults with systemic microangiopathy involving retina, liver, kidney, bones and brain. Here we confirm the causative role played by TREX1 autosomal dominant fs mutations disrupting the C-terminal of the protein, providing a model for the study of stroke in young adults.


Assuntos
Exodesoxirribonucleases/genética , Mutação da Fase de Leitura , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Fosfoproteínas/genética , Doenças Retinianas/genética , Doenças Vasculares/genética , Adulto , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Citosol/metabolismo , Citosol/patologia , Análise Mutacional de DNA , Exodesoxirribonucleases/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Seguimentos , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/tratamento farmacológico , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Microscopia Confocal , Fosfoproteínas/metabolismo , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Tomografia Computadorizada por Raios X , Doenças Vasculares/tratamento farmacológico , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia
12.
Acta Neuropathol ; 127(5): 667-83, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24531916

RESUMO

Intracellular inclusions composed of hyperphosphorylated filamentous tau are a hallmark of Alzheimer's disease, progressive supranuclear palsy, Pick's disease and other sporadic neurodegenerative tauopathies. Recent in vitro and in vivo studies have shown that tau aggregates do not only seed further tau aggregation within neurons, but can also spread to neighbouring cells and functionally connected brain regions. This process is referred to as 'tau propagation' and may explain the stereotypic progression of tau pathology in the brains of Alzheimer's disease patients. Here, we describe a novel in vivo model of tau propagation using human P301S tau transgenic mice infused unilaterally with brain extract containing tau aggregates. Infusion-related neurofibrillary tangle pathology was first observed 2 weeks post-infusion and increased in a stereotypic, time-dependent manner. Contralateral and anterior/posterior spread of tau pathology was also evident in nuclei with strong synaptic connections (efferent and afferent) to the site of infusion, indicating that spread was dependent on synaptic connectivity rather than spatial proximity. This notion was further supported by infusion-related tau pathology in white matter tracts that interconnect these regions. The rapid and robust propagation of tau pathology in this model will be valuable for both basic research and the drug discovery process.


Assuntos
Encéfalo/patologia , Emaranhados Neurofibrilares/patologia , Tauopatias/patologia , Proteínas tau/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Imuno-Histoquímica , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/metabolismo , Vias Neurais/patologia , Emaranhados Neurofibrilares/metabolismo , Distribuição Aleatória , Sinapses/metabolismo , Sinapses/patologia , Tauopatias/metabolismo , Fatores de Tempo , Substância Branca/metabolismo , Substância Branca/patologia , Proteínas tau/genética
13.
Curr Neurol Neurosci Rep ; 14(11): 495, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25218483

RESUMO

Neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, are characterized by the abnormal aggregation of a small number of intracellular proteins, with tau and α-synuclein being the most commonly affected. Until recently, the events leading to aggregate formation were believed to be entirely cell-autonomous, with protein misfolding occurring independently in many cells. It is now believed that protein aggregates form in a small number of brain cells, from which they propagate intercellularly through templated recruitment, reminiscent of the mechanisms by which prions spread through the nervous system.


Assuntos
Sistema Nervoso Central/metabolismo , Doenças Neurodegenerativas/metabolismo , Príons/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Humanos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Deficiências na Proteostase/complicações
14.
Acta Neuropathol Commun ; 12(1): 51, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576030

RESUMO

DNA methylation analysis based on supervised machine learning algorithms with static reference data, allowing diagnostic tumour typing with unprecedented precision, has quickly become a new standard of care. Whereas genome-wide diagnostic methylation profiling is mostly performed on microarrays, an increasing number of institutions additionally employ nanopore sequencing as a faster alternative. In addition, methylation-specific parallel sequencing can generate methylation and genomic copy number data. Given these diverse approaches to methylation profiling, to date, there is no single tool that allows (1) classification and interpretation of microarray, nanopore and parallel sequencing data, (2) direct control of nanopore sequencers, and (3) the integration of microarray-based methylation reference data. Furthermore, no software capable of entirely running in routine diagnostic laboratory environments lacking high-performance computing and network infrastructure exists. To overcome these shortcomings, we present EpiDiP/NanoDiP as an open-source DNA methylation and copy number profiling suite, which has been benchmarked against an established supervised machine learning approach using in-house routine diagnostics data obtained between 2019 and 2021. Running locally on portable, cost- and energy-saving system-on-chip as well as gpGPU-augmented edge computing devices, NanoDiP works in offline mode, ensuring data privacy. It does not require the rigid training data annotation of supervised approaches. Furthermore, NanoDiP is the core of our public, free-of-charge EpiDiP web service which enables comparative methylation data analysis against an extensive reference data collection. We envision this versatile platform as a useful resource not only for neuropathologists and surgical pathologists but also for the tumour epigenetics research community. In daily diagnostic routine, analysis of native, unfixed biopsies by NanoDiP delivers molecular tumour classification in an intraoperative time frame.


Assuntos
Epigenômica , Neoplasias , Humanos , Aprendizado de Máquina não Supervisionado , Computação em Nuvem , Neoplasias/diagnóstico , Neoplasias/genética , Metilação de DNA
15.
Brain ; 135(Pt 7): 2169-77, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22689910

RESUMO

The accumulation of insoluble proteins is a pathological hallmark of several neurodegenerative disorders. Tauopathies are caused by the dysfunction and aggregation of tau protein and an impairment of cellular protein degradation pathways may contribute to their pathogenesis. Thus, a deficiency in autophagy can cause neurodegeneration, while activation of autophagy is protective against some proteinopathies. Little is known about the role of autophagy in animal models of human tauopathy. In the present report, we assessed the effects of autophagy stimulation by trehalose in a transgenic mouse model of tauopathy, the human mutant P301S tau mouse, using biochemical and immunohistochemical analyses. Neuronal survival was evaluated by stereology. Autophagy was activated in the brain, where the number of neurons containing tau inclusions was significantly reduced, as was the amount of insoluble tau protein. This reduction in tau aggregates was associated with improved neuronal survival in the cerebral cortex and the brainstem. We also observed a decrease of p62 protein, suggesting that it may contribute to the removal of tau inclusions. Trehalose failed to activate autophagy in the spinal cord, where it had no impact on the level of sarkosyl-insoluble tau. Accordingly, trehalose had no effect on the motor impairment of human mutant P301S tau transgenic mice. Our findings provide direct evidence in favour of the degradation of tau aggregates by autophagy. Activation of autophagy may be worth investigating in the context of therapies for human tauopathies.


Assuntos
Autofagia/fisiologia , Modelos Animais de Doenças , Degeneração Neural/fisiopatologia , Tauopatias/fisiopatologia , Trealose/farmacologia , Animais , Autofagia/efeitos dos fármacos , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/tratamento farmacológico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/fisiologia , Tauopatias/tratamento farmacológico , Fator de Transcrição TFIIH , Fatores de Transcrição/metabolismo , Trealose/uso terapêutico , Proteínas tau/genética , Proteínas tau/metabolismo
16.
Eur Neurol ; 67(3): 142-50, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22261560

RESUMO

Neurodegenerative tauopathies may be inherited as autosomal-dominant disorders with variable clinicopathological phenotypes, and causative mutations in the microtubule-associated protein tau (MAPT) gene are not regularly seen. Herein, we describe a patient with clinically typical and autopsy-proven corticobasal degeneration (CBD). Her mother was diagnosed to have Parkinson's disease, but autopsy showed CBD pathology as in the index patient. The sister of the index patient had the clinical symptoms of primary progressive aphasia (PPA), but no pathology was available to date. Molecular analysis did not reveal any mutation in the MAPT or progranulin (GRN) genes. Our findings illustrate that CBD, progressive supranuclear palsy and PPA may be overlapping diseases with a common pathological basis rather than distinct entities. Clinical presentation and course might be determined by additional, yet unknown, genetic modifying factors.


Assuntos
Doenças dos Gânglios da Base/patologia , Encéfalo/patologia , Degeneração Neural/patologia , Tauopatias/patologia , Afasia Primária Progressiva/genética , Afasia Primária Progressiva/patologia , Afasia Primária Progressiva/psicologia , Doenças dos Gânglios da Base/genética , Doenças dos Gânglios da Base/psicologia , Feminino , Humanos , Pessoa de Meia-Idade , Degeneração Neural/genética , Degeneração Neural/psicologia , Exame Neurológico , Testes Neuropsicológicos , Linhagem , Fenótipo , Paralisia Supranuclear Progressiva/genética , Paralisia Supranuclear Progressiva/patologia , Paralisia Supranuclear Progressiva/psicologia , Tauopatias/genética , Tauopatias/psicologia
17.
Virchows Arch ; 481(4): 647-652, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35622144

RESUMO

Precision medicine is entering a new era of digital diagnostics; the availability of integrated digital pathology (DP) and structured clinical datasets has the potential to become a key catalyst for biomedical research, education and business development. In Europe, national programs for sharing of this data will be crucial for the development, testing, and validation of machine learning-enabled tools supporting clinical decision-making. Here, the Swiss Digital Pathology Consortium (SDiPath) discusses the creation of a Swiss Digital Pathology Infrastructure (SDPI), which aims to develop a unified national DP network bringing together the Swiss Personalized Health Network (SPHN) with Swiss university hospitals and subsequent inclusion of cantonal and private institutions. This effort builds on existing developments for the national implementation of structured pathology reporting. Opening this national infrastructure and data to international researchers in a sequential rollout phase can enable the large-scale integration of health data and pooling of resources for research purposes and clinical trials. Therefore, the concept of a SDPI directly synergizes with the priorities of the European Commission communication on the digital transformation of healthcare on an international level, and with the aims of the Swiss State Secretariat for Economic Affairs (SECO) for advancing research and innovation in the digitalization domain. SDPI directly addresses the needs of existing national and international research programs in neoplastic and non-neoplastic diseases by providing unprecedented access to well-curated clinicopathological datasets for the development and implementation of novel integrative methods for analysis of clinical outcomes and treatment response. In conclusion, a SDPI would facilitate and strengthen inter-institutional collaboration in technology, clinical development, business and research at a national and international scale, promoting improved patient care via precision medicine.


Assuntos
Pesquisa Biomédica , Europa (Continente) , Humanos , Aprendizado de Máquina , Medicina de Precisão , Suíça
19.
Cancer Cell ; 39(3): 288-293, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33482122

RESUMO

The application and integration of molecular profiling technologies create novel opportunities for personalized medicine. Here, we introduce the Tumor Profiler Study, an observational trial combining a prospective diagnostic approach to assess the relevance of in-depth tumor profiling to support clinical decision-making with an exploratory approach to improve the biological understanding of the disease.


Assuntos
Neoplasias/genética , Neoplasias/metabolismo , Tomada de Decisão Clínica/métodos , Biologia Computacional/métodos , Sistemas de Apoio a Decisões Clínicas , Humanos , Medicina de Precisão/métodos , Estudos Prospectivos
20.
EMBO Mol Med ; 13(11): e13714, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34661368

RESUMO

Risk stratification of COVID-19 patients is essential for pandemic management. Changes in the cell fitness marker, hFwe-Lose, can precede the host immune response to infection, potentially making such a biomarker an earlier triage tool. Here, we evaluate whether hFwe-Lose gene expression can outperform conventional methods in predicting outcomes (e.g., death and hospitalization) in COVID-19 patients. We performed a post-mortem examination of infected lung tissue in deceased COVID-19 patients to determine hFwe-Lose's biological role in acute lung injury. We then performed an observational study (n = 283) to evaluate whether hFwe-Lose expression (in nasopharyngeal samples) could accurately predict hospitalization or death in COVID-19 patients. In COVID-19 patients with acute lung injury, hFwe-Lose is highly expressed in the lower respiratory tract and is co-localized to areas of cell death. In patients presenting in the early phase of COVID-19 illness, hFwe-Lose expression accurately predicts subsequent hospitalization or death with positive predictive values of 87.8-100% and a negative predictive value of 64.1-93.2%. hFwe-Lose outperforms conventional inflammatory biomarkers and patient age and comorbidities, with an area under the receiver operating characteristic curve (AUROC) 0.93-0.97 in predicting hospitalization/death. Specifically, this is significantly higher than the prognostic value of combining biomarkers (serum ferritin, D-dimer, C-reactive protein, and neutrophil-lymphocyte ratio), patient age and comorbidities (AUROC of 0.67-0.92). The cell fitness marker, hFwe-Lose, accurately predicts outcomes in COVID-19 patients. This finding demonstrates how tissue fitness pathways dictate the response to infection and disease and their utility in managing the current COVID-19 pandemic.


Assuntos
COVID-19 , Biomarcadores , Flores , Humanos , Pandemias , Curva ROC , Estudos Retrospectivos , SARS-CoV-2 , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA