Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Int J Health Sci (Qassim) ; 15(5): 18-27, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34548859

RESUMO

OBJECTIVES: The aim of this study is to determine the genetic relatedness of extended-spectrum beta-lactamases (ESBL)-producing Escherichia coli using the enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) technique. METHODS: Suspected Gram-negative bacteria with their identities from the clinical samples were confirmed using Microgen GN-A-ID Kit. The double-disc synergy test was used to confirm for ESBL-producing E. coli. The susceptibility of the organisms was tested against eleven antimicrobial agents. A singleplex PCR assay was carried out targeting TEM, SHV, CTX-M, and OXA. ERIC-PCR performed, and band patterns obtained were visually evaluated. A dendrogram of the ERIC-PCR fingerprint pattern was done with the aid of DendroUPGMA using the cluster method. RESULTS: Of the 576 clinical samples collected, 23 isolates were confirmed E. coli, and all (100%) are ESBL producers. The highest antibiotic resistance rate was recorded in cefixime (95.6%), and the least was amikacin (17.4%). The predominant ESBL gene is blaTEM genes (95.6%). Gel analysis of ERIC-PCR revealed 1-6 bands. The profiles of the ERIC-PCR differentiated the 23 E. coli isolates into four ERIC cluster types. CONCLUSION: More than 80% of the isolates are sensitive to amikacin, with greater than 95% harboring blaTEM genes. Overall, ERIC obtained from the clinical specimens indicated some evidence in the genetic relatedness of the ESBL genes among E. coli isolates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA