RESUMO
Microelectrodes have transformed our understanding of spatiotemporal responses to electrical stimulation. However, biological signals are often molecular, complicating the capture of intricate chemical signals. The microfluidic chip developed in this paper accurately measures droplet volume by using impedance analysis. The utilization of droplet volume as a feedback signal for precise microsampling pressure control ensures that microsampling remains unaffected by droplet volume influence. Once the microsampling is complete, chemiluminescence detection enables high temporal resolution and continuous and sensitive monitoring of chemical information within the droplets. Experimental verification shows that the chip can avoid volume influence through impedance feedback, achieving consistent and stable microampling at the nanoliter level (0-3 nL). In just 0.3 s, it can perform sensitive chemiluminescence detection of H2O2 and glucose within droplets. The linear detection ranges for these analytes are 10-50,000 and 20-600 µM, respectively, with the limit of detection being 0.648 and 0.334 µM. The significance of this chip lies in its ability to reveal changes in both electrical and chemical signals during transient biological processes. Its potential applications are numerous, encompassing a wide range of emerging areas such as single-cell analysis, cell communication, and cellular immunity.
Assuntos
Impedância Elétrica , Glucose , Peróxido de Hidrogênio , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Glucose/análise , Técnicas Analíticas Microfluídicas/instrumentação , Dispositivos Lab-On-A-Chip , Medições Luminescentes/métodos , Medições Luminescentes/instrumentação , MicroeletrodosRESUMO
This paper reports a spin-disc paper-based device with 10 individual detection units containing electromagnetic modules controlling the sample incubation time before chemiluminescence (CL) signal detection. After the sample was added to the top paper chip and incubated with the enzyme, the electromagnet was turned off to allow contact between the top and bottom paper. The H2O2 generated by the sample flowed vertically to the bottom paper and initiated the oxidase of the luminol to generate the CL signal. After one detection the disc was automatically rotated to the next position to repeat the above detection. The advantage of using the device over the lateral flow and the in situ detection was firstly proved using the detection of H2O2 and the glucose/lactate sample with 5 minute incubation. The CL intensity was increased 300 times/1000 times as the glucose/lactate was incubated for 5 minutes compared to the non-incubated samples. Afterward, the device was employed to separately detect glucose and lactate diluted in PBS, artificial sweat, artificial saliva, and fresh cell culture media. Finally, the device was employed to detect the glucose and lactate in the media collected over the 24 hour culture of PC3 cells. The uptake and production rates of glucose and lactate were correspondingly determined as 0.328 ± 0.015 pmol h-1 per cell and 1.254 ± 0.053 pmol h-1 per cell, respectively. The reported device has wide application potential due to its capabilities in automatic detection of multiple samples with very high sensitivity and small sample volume (down to 0.5 µL).
Assuntos
Glucose , Ácido Láctico , Luminescência , Peróxido de Hidrogênio , Luminol , Medições LuminescentesRESUMO
Cell metabolite detection is important for cell analysis. As a cellular metabolite, lactate and its detection play an important role in disease diagnosis, drug screening and clinical therapeutics. This paper reports a microfluidic chip integrated with a backflow prevention channel for cell culture and lactate detection. It can effectively realize the upstream and downstream separation of the culture chamber and the detection zone, and prevent the pollution of cells caused by the potential backflow of reagent and buffer solutions. Due to such a separation, it is possible to analyze the lactate concentration in the flow process without contamination of cells. With the information of residence time distribution of the microchannel networks and the detected time signal in the detection chamber, it is possible to calculate the lactate concentration as a function of time using the de-convolution method. We have further demonstrated the suitability of this detection method by measuring lactate production in human umbilical vein endothelial cells (HUVEC). The microfluidic chip presented here shows good stability in metabolite quick detection and can work continuously for more than a few days. It sheds new insights into pollution-free and high-sensitivity cell metabolism detection, showing broad application prospects in cell analysis, drug screening and disease diagnosis.