RESUMO
We report on the fabrication and characterization of iron oxide nanoparticle thin film superlattices. The formation into different film morphologies is controlled by tuning the particle plus solvent-to-substrate interaction. It turns out that the wetting vs dewetting properties of the solvent before the self-assembly process during solvent evaporation plays a major role in determining the resulting film morphology. In addition to layerwise growth three-dimensional mesocrystalline growth is also evidenced. The understanding of the mechanisms ruling nanoparticle self-assembly represents an important step towards the fabrication of novel materials with tailored optical, magnetic or electrical transport properties.
RESUMO
Using neutron reflectometry and resonant x-ray techniques we studied the magnetic proximity effect (MPE) in superlattices composed of superconducting YBa2Cu3O7 and ferromagnetic-metallic La0.67Ca0.33MnO3 or ferromagnetic-insulating LaMnO(3+δ). We find that the MPE strongly depends on the electronic state of the manganite layers, being pronounced for the ferromagnetic-metallic La0.67Ca0.33MnO3 and almost absent for ferromagnetic-insulating LaMnO(3+δ). We also detail the change of the magnetic depth profile due to the MPE and provide evidence for its intrinsic nature.
RESUMO
We have investigated the structure and magnetism of self-assembled, 20 nm diameter iron oxide nanoparticles covered by an oleic acid shell for scrutinizing their structural and magnetic correlations. The nanoparticles were spin-coated on an Si substrate as a single monolayer and as a stack of 5 ML forming a multilayer. X-ray scattering (reflectivity and grazing incidence small-angle scattering) confirms high in-plane hexagonal correlation and a good layering property of the nanoparticles. Using polarized neutron reflectivity we have also determined the long range magnetic correlations parallel and perpendicular to the layers in addition to the structural ones. In a field of 5 kOe we determine a magnetization value of about 80% of the saturation value. At remanence the global magnetization is close to zero. However, polarized neutron reflectivity reveals the existence of regions in which magnetic moments of nanoparticles are well aligned, while losing order over longer distances. These findings confirm that in the nanoparticle assembly the magnetic dipole-dipole interaction is rather strong, dominating the collective magnetic properties at room temperature.
Assuntos
Nanopartículas de Magnetita/química , Campos Eletromagnéticos , Nanopartículas de Magnetita/ultraestrutura , Magnetometria , Microscopia Eletrônica de Varredura , Nêutrons , Ácido Oleico , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Raios XRESUMO
A detailed investigation of magnetic impurity-mediated interlayer exchange coupling observed in Cu(0.94)Mn(0.06)/Co multilayers using polarized neutron reflectometry and magnetic x-ray techniques is reported. Excellent descriptions of temperature and magnetic field dependent biquadratic coupling are obtained using a variant of the loose spin model that takes into account the distribution of the impurity Mn ions in three dimensions. Positional disorder of the magnetic impurities is shown to enhance biquadratic coupling via a new contribution J(2)(fluct), leading to a temperature dependent canting of magnetic domains in the multilayer. These results provide measurable effects on RKKY coupling associated with the distribution of impurities within planes parallel to the interfaces.
RESUMO
Arrangement of chromatin in intact chicken erythrocyte nuclei was investigated by small angle neutron scattering. The scattering spectra have revealed that on the scales between 15 nm and 1.5 microm the interior of the nucleus exhibited properties of a mass fractal. The fractal dimension of the protein component of cell nucleus held constant at approximately 2.5, while the DNA organization was biphasic, with the fractal dimension slightly higher than 2 on the scales smaller than 300 nm and approaching 3 on the larger scales.
Assuntos
Núcleo Celular/genética , Cromatina/química , Cromatina/genética , DNA/química , Eritrócitos/citologia , Fractais , Conformação de Ácido Nucleico , Animais , Núcleo Celular/química , Galinhas/genética , DNA/metabolismo , Interfase , Difração de NêutronsRESUMO
We prepared monolayers of iron oxide nanoparticles via self-assembly on a bare silicon wafer and on a vanadium film sputter deposited onto a plane sapphire substrate. The magnetic configuration of nanoparticles in such a dense assembly was investigated by polarized neutron reflectivity. A theoretical model fit shows that the magnetic moments of nanoparticles form quasi domain-like configurations at remanence. This is attributed to the dipolar coupling amongst the nanoparticles.
RESUMO
A new neutron reflectometer SuperADAM has recently been built and commissioned at the Institut Laue-Langevin, Grenoble, France. It replaces the previous neutron reflectometer ADAM. The new instrument uses a solid state polarizer/wavelength filter providing a highly polarized (up to 98.6%) monochromatic neutron flux of 8 × 10(4) n cm(-2) s(-1) with monochromatization Δλ∕λ = 0.7% and angular divergence Δα = 0.2 mrad. The instrument includes both single and position sensitive detectors. The position sensitive detector allows simultaneous measurement of specular reflection and off-specular scattering. Polarization analysis for both specular reflection and off-specular scattering is achieved using either mirror analyzers or a (3)He spin filter cell. High efficiency detectors, low background, and high flux provides a dynamic range of up to seven decades in reflectivity. Detailed specifications and the instrument capabilities are illustrated with examples of recently collected data in the fields of thin film magnetism and thin polymer films.
Assuntos
Difração de Nêutrons/instrumentação , Difusão , Desenho de EquipamentoRESUMO
Direct evidence of the nonuniformly canted state of the spin-flop phase induced by a magnetic field applied to Fe/Cr(100) superlattices is obtained by polarized neutron reflectometry. It is unambiguously demonstrated that the magnetization of the alternating Fe layers is twisted through the multilayer stack proving a stable noncollinear configuration. The maximal tilt at the end layers progressively reduces towards the center of the multilayer. The set of tilt angles is deduced from a model-free data evaluation employing the supermatrix routine. Spin-flip off-specular scattering is determined by the in-plane magnetization fluctuations and is fitted by a theoretical model of domains.