Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Circ Res ; 132(3): 267-289, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36625265

RESUMO

BACKGROUND: The tyrosine kinase inhibitor ponatinib is the only treatment option for chronic myelogenous leukemia patients with T315I (gatekeeper) mutation. Pharmacovigilance analysis of Food and Drug Administration and World Health Organization datasets has revealed that ponatinib is the most cardiotoxic agent among all Food and Drug Administration-approved tyrosine kinase inhibitors in a real-world scenario. However, the mechanism of ponatinib-induced cardiotoxicity is unknown. METHODS: The lack of well-optimized mouse models has hampered the in vivo cardio-oncology studies. Here, we show that cardiovascular comorbidity mouse models evidence a robust cardiac pathological phenotype upon ponatinib treatment. A combination of multiple in vitro and in vivo models was employed to delineate the underlying molecular mechanisms. RESULTS: An unbiased RNA sequencing analysis identified the enrichment of dysregulated inflammatory genes, including a multifold upregulation of alarmins S100A8/A9, as a top hit in ponatinib-treated hearts. Mechanistically, we demonstrate that ponatinib activates the S100A8/A9-TLR4 (Toll-like receptor 4)-NLRP3 (NLR family pyrin domain-containing 3)-IL (interleukin)-1ß signaling pathway in cardiac and systemic myeloid cells, in vitro and in vivo, thereby leading to excessive myocardial and systemic inflammation. Excessive inflammation was central to the cardiac pathology because interventions with broad-spectrum immunosuppressive glucocorticoid dexamethasone or specific inhibitors of NLRP3 (CY-09) or S100A9 (paquinimod) nearly abolished the ponatinib-induced cardiac dysfunction. CONCLUSIONS: Taken together, these findings uncover a novel mechanism of ponatinib-induced cardiac inflammation leading to cardiac dysfunction. From a translational perspective, our results provide critical preclinical data and rationale for a clinical investigation into immunosuppressive interventions for managing ponatinib-induced cardiotoxicity.


Assuntos
Cardiotoxicidade , Cardiopatias , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Calgranulina A/genética , Inflamação/induzido quimicamente
2.
Basic Res Cardiol ; 118(1): 35, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656238

RESUMO

Myocardial infarction (MI) is the leading cause of death worldwide. Glycogen synthase kinase-3 (GSK-3) has been considered to be a promising therapeutic target for cardiovascular diseases. GSK-3 is a family of ubiquitously expressed serine/threonine kinases. GSK-3 isoforms appear to play overlapping, unique, and even opposing functions in the heart. Previously, our group identified that cardiac fibroblast (FB) GSK-3ß acts as a negative regulator of fibrotic remodeling in the ischemic heart. However, the role of FB-GSK-3α in MI pathology is not defined. To determine the role of FB-GSK-3α in MI-induced adverse cardiac remodeling, GSK-3α was deleted specifically in the residential fibroblast or myofibroblast (MyoFB) using tamoxifen (TAM) inducible Tcf21 or Periostin (Postn) promoter-driven Cre recombinase, respectively. Echocardiographic analysis revealed that FB- or MyoFB-specific GSK-3α deletion prevented the development of dilative remodeling and cardiac dysfunction. Morphometrics and histology studies confirmed improvement in capillary density and a remarkable reduction in hypertrophy and fibrosis in the KO group. We harvested the hearts at 4 weeks post-MI and analyzed signature genes of adverse remodeling. Specifically, qPCR analysis was performed to examine the gene panels of inflammation (TNFα, IL-6, IL-1ß), fibrosis (COL1A1, COL3A1, COMP, Fibronectin-1, Latent TGF-ß binding protein 2), and hypertrophy (ANP, BNP, MYH7). These molecular markers were essentially normalized due to FB-specific GSK-3α deletion. Further molecular studies confirmed that FB-GSK-3α could regulate NF-kB activation and expression of angiogenesis-related proteins. Our findings suggest that FB-GSK-3α plays a critical role in the pathological cardiac remodeling of ischemic hearts, therefore, it could be therapeutically targeted.


Assuntos
Quinase 3 da Glicogênio Sintase , Infarto do Miocárdio , Humanos , Glicogênio Sintase Quinase 3 beta , Remodelação Ventricular , Infarto do Miocárdio/genética , Fibroblastos , Hipertrofia , Inflamação , Proteínas Angiogênicas
3.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166724, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37094727

RESUMO

Glycogen synthase kinase-3 (GSK-3) is a family of serine/threonine kinases. The GSK-3 family has 2 isoforms, GSK-3α and GSK-3ß. The GSK-3 isoforms have been shown to play overlapping as well as isoform-specific-unique roles in both, organ homeostasis and the pathogenesis of multiple diseases. In the present review, we will particularly focus on expanding the isoform-specific role of GSK-3 in the pathophysiology of cardiometabolic disorders. We will highlight recent data from our lab that demonstrated the critical role of cardiac fibroblast (CF) GSK-3α in promoting injury-induced myofibroblast transformation, adverse fibrotic remodeling, and deterioration of cardiac function. We will also discuss studies that found the exact opposite role of CF-GSK-3ß in cardiac fibrosis. We will review emerging studies with inducible cardiomyocyte (CM)-specific as well as global isoform-specific GSK-3 KOs that demonstrated inhibition of both GSK-3 isoforms provides benefits against obesity-associated cardiometabolic pathologies. The underlying molecular interactions and crosstalk among GSK-3 and other signaling pathways will be discussed. We will briefly review the specificity and limitations of the available small molecule inhibitors targeting GSK-3 and their potential applications to treat metabolic disorders. Finally, we will summarize these findings and offer our perspective on envisioning GSK-3 as a therapeutic target for the management of cardiometabolic diseases.


Assuntos
Cardiomiopatias , Quinase 3 da Glicogênio Sintase , Humanos , Glicogênio Sintase Quinase 3 beta , Miócitos Cardíacos/patologia , Isoformas de Proteínas/genética , Cardiomiopatias/patologia
4.
Cells ; 11(3)2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-35159367

RESUMO

Obesity-associated metabolic disorders are rising to pandemic proportions; hence, there is an urgent need to identify underlying molecular mechanisms. Glycogen synthase kinase-3 (GSK-3) signaling is highly implicated in metabolic diseases. Furthermore, GSK-3 expression and activity are increased in Type 2 diabetes patients. However, the isoform-specific role of GSK-3 in obesity and glucose intolerance is unclear. Pharmacological GSK-3 inhibitors are not isoform-specific, and tissue-specific genetic models are of limited value to predict the clinical outcome of systemic inhibiion. To overcome these limitations, we created novel mouse models of ROSA26CreERT2-driven, tamoxifen-inducible conditional deletion of GSK-3 that allowed us to delete the gene globally in an isoform-specific and temporal manner. Isoform-specific GSK-3 KOs and littermate controls were subjected to a 16-week high-fat diet (HFD) protocol. On an HFD, GSK-3α KO mice had a significantly lower body weight and modest improvement in glucose tolerance compared to their littermate controls. In contrast, GSK-3ß-deletion-mediated improved glucose tolerance was evident much earlier in the timeline and extended up to 12 weeks post-HFD. However, this protective effect weakened after chronic HFD (16 weeks) when GSK-3ß KO mice had a significantly higher body weight compared to controls. Importantly, GSK-3ß KO mice on a control diet maintained significant improvement in glucose tolerance even after 16 weeks. In summary, our novel mouse models allowed us to delineate the isoform-specific role of GSK-3 in obesity and glucose tolerance. From a translational perspective, our findings underscore the importance of maintaining a healthy weight in patients receiving lithium therapy, which is thought to work by GSK-3 inhibition mechanisms.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/etiologia , Quinase 3 da Glicogênio Sintase/efeitos adversos , Obesidade/etiologia , Isoformas de Proteínas/metabolismo , Animais , Feminino , Intolerância à Glucose/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Obesidade/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA