Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nature ; 588(7836): 106-111, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33116308

RESUMO

The transition from 'well-marked varieties' of a single species into 'well-defined species'-especially in the absence of geographic barriers to gene flow (sympatric speciation)-has puzzled evolutionary biologists ever since Darwin1,2. Gene flow counteracts the buildup of genome-wide differentiation, which is a hallmark of speciation and increases the likelihood of the evolution of irreversible reproductive barriers (incompatibilities) that complete the speciation process3. Theory predicts that the genetic architecture of divergently selected traits can influence whether sympatric speciation occurs4, but empirical tests of this theory are scant because comprehensive data are difficult to collect and synthesize across species, owing to their unique biologies and evolutionary histories5. Here, within a young species complex of neotropical cichlid fishes (Amphilophus spp.), we analysed genomic divergence among populations and species. By generating a new genome assembly and re-sequencing 453 genomes, we uncovered the genetic architecture of traits that have been suggested to be important for divergence. Species that differ in monogenic or oligogenic traits that affect ecological performance and/or mate choice show remarkably localized genomic differentiation. By contrast, differentiation among species that have diverged in polygenic traits is genomically widespread and much higher overall, consistent with the evolution of effective and stable genome-wide barriers to gene flow. Thus, we conclude that simple trait architectures are not always as conducive to speciation with gene flow as previously suggested, whereas polygenic architectures can promote rapid and stable speciation in sympatry.


Assuntos
Ciclídeos/classificação , Ciclídeos/genética , Especiação Genética , Genoma/genética , Genômica , Simpatria/genética , Animais , Ciclídeos/anatomia & histologia , Feminino , Fluxo Gênico , Deriva Genética , Masculino , Preferência de Acasalamento Animal , Herança Multifatorial/genética , Filogenia , Pigmentação/genética , Polimorfismo Genético
2.
J Mol Evol ; 92(4): 432-448, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38861038

RESUMO

Gene duplication is one of the most important sources of novel genotypic diversity and the subsequent evolution of phenotypic diversity. Determining the evolutionary history and functional changes of duplicated genes is crucial for a comprehensive understanding of adaptive evolution. The evolutionary history of visual opsin genes is very dynamic, with repeated duplication events followed by sub- or neofunctionalization. While duplication of the green-sensitive opsins rh2 is common in teleost fish, fewer cases of multiple duplication events of the red-sensitive opsin lws are known. In this study, we investigate the visual opsin gene repertoire of the anabantoid fishes, focusing on the five lws opsin genes found in the genus Betta. We determine the evolutionary history of the lws opsin gene by taking advantage of whole-genome sequences of nine anabantoid species, including the newly assembled genome of Betta imbellis. Our results show that at least two independent duplications of lws occurred in the Betta lineage. The analysis of amino acid sequences of the lws paralogs of Betta revealed high levels of diversification in four of the seven transmembrane regions of the lws protein. Amino acid substitutions at two key-tuning sites are predicted to lead to differentiation of absorption maxima (λmax) between the paralogs within Betta. Finally, eye transcriptomics of B. splendens at different developmental stages revealed expression shifts between paralogs for all cone opsin classes. The lws genes are expressed according to their relative position in the lws opsin cluster throughout ontogeny. We conclude that temporal collinearity of lws expression might have facilitated subfunctionalization of lws in Betta and teleost opsins in general.


Assuntos
Evolução Molecular , Duplicação Gênica , Filogenia , Opsinas de Bastonetes , Animais , Opsinas de Bastonetes/genética , Peixes/genética , Sequência de Aminoácidos , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Opsinas/genética , Opsinas/metabolismo
3.
Am Nat ; 203(5): 604-617, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38635367

RESUMO

AbstractSelection pressures differ along environmental gradients, and traits tightly linked to fitness (e.g., the visual system) are expected to track such variation. Along gradients, adaptation to local conditions might be due to heritable and nonheritable environmentally induced variation. Disentangling these sources of phenotypic variation requires studying closely related populations in nature and in the laboratory. The Nicaraguan lakes represent an environmental gradient in photic conditions from clear crater lakes to very turbid great lakes. From two old, turbid great lakes, Midas cichlid fish (Amphilophus cf. citrinellus) independently colonized seven isolated crater lakes of varying light conditions, resulting in a small adaptive radiation. We estimated variation in visual sensitivities along this photic gradient by measuring cone opsin gene expression among lake populations. Visual sensitivities observed in all seven derived crater lake populations shifted predictably in direction and magnitude, repeatedly mirroring changes in photic conditions. Comparing wild-caught and laboratory-reared fish revealed that 48% of this phenotypic variation is genetically determined and evolved rapidly. Decreasing intrapopulation variation as environments become spectrally narrower suggests that different selective landscapes operate along the gradient. We conclude that the power to predict phenotypic evolution along gradients depends on both the magnitude of environmental change and the selective landscape shape.


Assuntos
Ciclídeos , Lagos , Animais , Ciclídeos/genética , Opsinas/genética , Expressão Gênica , Ecossistema
4.
Proc Biol Sci ; 289(1974): 20220266, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35538779

RESUMO

Phylogenetic comparative studies suggest that the direction of deviation from bilateral symmetry (sidedness) might evolve through genetic assimilation; however, the changes in sidedness inheritance remain largely unknown. We investigated the evolution of genital asymmetry in fish of the family Anablepidae, in which males' intromittent organ (the gonopodium, a modified anal fin) bends asymmetrically to the left or the right. In most species, males show a 1 : 1 ratio of left-to-right-sided gonopodia. However, we found that in three species left-sided males are significantly more abundant than right-sided ones. We mapped sidedness onto a new molecular phylogeny, finding that this left-sided bias likely evolved independently three times. Our breeding experiment in a species with an excess of left-sided males showed that sires produced more left-sided offspring independently of their own sidedness. We propose that sidedness might be inherited as a threshold trait, with different thresholds across species. This resolves the apparent paradox that, while there is evidence for the evolution of sidedness, commonly there is a lack of support for its heritability and no response to artificial selection. Focusing on the heritability of the left : right ratio of offspring, rather than on individual sidedness, is key for understanding how the direction of asymmetry becomes genetically assimilated.


Assuntos
Ciprinodontiformes , Genitália , Animais , Ciprinodontiformes/genética , Masculino , Filogenia
5.
Ecol Lett ; 24(12): 2739-2749, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34636129

RESUMO

Understanding the ecological factors that shape geographic range limits and the evolutionary constraints that prevent populations from adaptively evolving beyond these limits is an unresolved question. Here, we investigated why the euryhaline fish, Poecila reticulata, is confined to freshwater within its native range, despite being tolerant of brackish water. We hypothesised that competitive interactions with a close relative, Poecilia picta, in brackish water prevents P. reticulata from colonising brackish water. Using a combination of field transplant, common garden breeding, and laboratory behaviour experiments, we find support for this hypothesis, as P. reticulata are behaviourally subordinate and have lower survival in brackish water with P. picta. We also found a negative genetic correlation between P. reticulata growth in brackish water versus freshwater in the presence of P. picta, suggesting a genetically based trade-off between salinity tolerance and competitive ability could constrain adaptive evolution at the range limit.


Assuntos
Água Doce , Tolerância ao Sal , Animais , Salinidade
6.
Am Nat ; 197(1): 29-46, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33417522

RESUMO

AbstractDetecting contemporary evolution requires demonstrating that genetic change has occurred. Mixed effects models allow estimation of quantitative genetic parameters and are widely used to study evolution in wild populations. However, predictions of evolution based on these parameters frequently fail to match observations. Here, we applied three commonly used quantitative genetic approaches to predict the evolution of size at maturity in a wild population of Trinidadian guppies. Crucially, we tested our predictions against evolutionary change observed in common-garden experiments performed on samples from the same population. We show that standard quantitative genetic models underestimated or failed to detect the cryptic evolution of this trait as demonstrated by the common-garden experiments. The models failed because (1) size at maturity and fitness both decreased with increases in population density, (2) offspring experienced higher population densities than their parents, and (3) selection on size was strongest at high densities. When we accounted for environmental change, predictions better matched observations in the common-garden experiments, although substantial uncertainty remained. Our results demonstrate that predictions of evolution are unreliable if environmental change is not appropriately captured in models.


Assuntos
Evolução Biológica , Tamanho Corporal/genética , Poecilia/genética , Animais , Aptidão Genética , Masculino , Modelos Genéticos , Poecilia/anatomia & histologia , Densidade Demográfica , Seleção Genética , Maturidade Sexual
7.
Mol Ecol ; 30(8): 1880-1891, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33619757

RESUMO

The visual system of vertebrates has greatly contributed to our understanding of how different molecular mechanisms shape adaptive phenotypic diversity. Extensive work on African cichlid fishes has shown how variation in opsin gene expression mediates diversification as well as convergent evolution in colour vision. This trait has received less attention in Neotropical cichlids, the sister lineage to African cichlids, but the work done so far led to the conclusion that colour vision is much less variable in Neotropical species. However, as only few taxa have been investigated and as recent work found contradicting patterns, the diversity in meotropical cichlids might be greatly underestimated. Here, we survey patterns of opsin gene expression in 35 representative species of Neotropical cichlids, revealing much more variation than previously known. This diversity can be attributed to two main mechanisms: (i) differential expression of the blue-sensitive sws2a, the green-sensitive rh2a, and the red-sensitive lws opsin genes, and (ii) simultaneous expression of up to five opsin genes, instead of only three as commonly found, in a striking dorsoventral pattern across the retina. This intraretinal variation in opsin genes expression results in steep gradients in visual sensitivity that may represent a convergent adaptation to clear waters with broad light environments. These results highlight the role and flexibility of gene expression in generating adaptive phenotypic diversification.


Assuntos
Ciclídeos , Animais , Ciclídeos/genética , Evolução Molecular , Opsinas/genética , Filogenia , Opsinas de Bastonetes/genética
8.
Proc Biol Sci ; 287(1930): 20200969, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32635868

RESUMO

Animal genitalia vary considerably across taxa, with divergence in many morphological traits, including striking departures from symmetry. Different mechanisms have been proposed to explain this diversity, mostly assuming that at least some of the phenotypic variation is heritable. However, heritability of the direction of genital asymmetry has been rarely determined. Anablepidae are internally fertilizing fish where the anal fin of males has been modified into an intromittent organ that transfers sperm into the gonopore of females. Males of anablepid fishes exhibit asymmetric genitalia, and both left- and right-sided individuals are commonly found at similar proportions within populations (i.e. antisymmetry). Although this polymorphism was described over a century ago, there have been no attempts to determine if genital asymmetry has a genetic basis and whether the different morphs are accumulating genetic differences, as might be expected since in some species females have also asymmetric gonopores and thereby can only be fertilized by compatible asymmetric males. We address this issue by combining breeding experiments with genome-wide data (ddRAD markers) in representative species of the two anablepid genera with asymmetric genitalia: Anableps and Jenynsia. Breeding experiments showed that all offspring were asymmetric, but their morphotype (i.e. right- or left-sided) was independent of parental morphotype, implying that the direction of asymmetry does not have a strong genetic component. Consistent with this conclusion, association analyses based on approximately 25 000 SNPs did not identify markers significantly associated with the direction of genital asymmetry and there was no evidence of population structure between left- and right-sided individuals. These results suggest that the direction of genital asymmetry in anablepid fishes might be stochastic, a commonly observed pattern in species with antisymmetry in morphological traits.


Assuntos
Evolução Biológica , Peixes/anatomia & histologia , Genitália/anatomia & histologia , Animais , Cruzamento , Feminino , Fertilização , Masculino , Filogenia , Comportamento Sexual Animal
9.
Mol Ecol ; 29(8): 1476-1493, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32215986

RESUMO

Cichlid fishes' famous diversity in body coloration is accompanied by a highly diverse and complex visual system. Although cichlids possess an unusually high number of seven cone opsin genes, they express only a subset of these during their ontogeny, accounting for their astonishing interspecific variation in visual sensitivities. Much of this diversity is thought to have been shaped by natural selection as cichlids inhabit a variety of habitats with distinct light environments. Also, sexual selection might have contributed to the observed visual diversity, and sexual dimorphism in coloration potentially co-evolved with sexual dimorphism in opsin expression. We investigated sex-specific opsin expression of several cichlids from Africa and the Neotropics and collected and integrated data sets on sex-specific body coloration, species-specific visual sensitivities, lens transmission and habitat light properties for some of them. We comparatively analysed this wide range of molecular and ecological data, illustrating how integrative approaches can address specific questions on the factors and mechanisms driving diversification, and the evolution of cichlid vision in particular. We found that both sexes expressed opsins at the same levels-even in sexually dimorphic cichlid species-which argues against coevolution of sexual dichromatism and differences in sex-specific visual sensitivity. Rather, a combination of environmental light properties and body coloration shaped the diversity in spectral sensitivities among cichlids. We conclude that although cichlids are particularly colourful and diverse and often sexually dimorphic, it would appear that natural rather than sexual selection is a more powerful force driving visual diversity in this hyperdiverse lineage.


Assuntos
Ciclídeos , Opsinas dos Cones , África , Animais , Ciclídeos/genética , Opsinas dos Cones/genética , Ecossistema , Evolução Molecular , Feminino , Masculino , Seleção Sexual
10.
Am Nat ; 194(5): 671-692, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31613664

RESUMO

Organisms can change their environment and in doing so change the selection they experience and how they evolve. Population density is one potential mediator of such interactions because high population densities can impact the ecosystem and reduce resource availability. At present, such interactions are best known from theory and laboratory experiments. Here we quantify the importance of such interactions in nature by transplanting guppies from a stream where they co-occur with predators into tributaries that previously lacked both guppies and predators. If guppies evolve solely because of the immediate reduction in mortality rate, the strength of selection and rate of evolution should be greatest at the outset and then decline as the population adapts to its new environment. If indirect effects caused by the increase in guppy population density in the absence of predation prevail, then there should be a lag in guppy evolution because time is required for them to modify their environment. The duration of this lag is predicted to be associated with the environmental modification caused by guppies. We observed a lag in life-history evolution associated with increases in population density and altered ecology. How guppies evolved matched predictions derived from evolutionary theory that incorporates such density effects.


Assuntos
Evolução Biológica , Características de História de Vida , Poecilia/fisiologia , Animais , Tamanho Corporal , Ecossistema , Feminino , Masculino , Poecilia/genética , Densidade Demográfica , Comportamento Predatório , Trinidad e Tobago
11.
Mol Biol Evol ; 34(10): 2469-2485, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28444297

RESUMO

Midas cichlid fish are a Central American species flock containing 13 described species that has been dated to only a few thousand years old, a historical timescale infrequently associated with speciation. Their radiation involved the colonization of several clear water crater lakes from two turbid great lakes. Therefore, Midas cichlids have been subjected to widely varying photic conditions during their radiation. Being a primary signal relay for information from the environment to the organism, the visual system is under continuing selective pressure and a prime organ system for accumulating adaptive changes during speciation, particularly in the case of dramatic shifts in photic conditions. Here, we characterize the full visual system of Midas cichlids at organismal and genetic levels, to determine what types of adaptive changes evolved within the short time span of their radiation. We show that Midas cichlids have a diverse visual system with unexpectedly high intra- and interspecific variation in color vision sensitivity and lens transmittance. Midas cichlid populations in the clear crater lakes have convergently evolved visual sensitivities shifted toward shorter wavelengths compared with the ancestral populations from the turbid great lakes. This divergence in sensitivity is driven by changes in chromophore usage, differential opsin expression, opsin coexpression, and to a lesser degree by opsin coding sequence variation. The visual system of Midas cichlids has the evolutionary capacity to rapidly integrate multiple adaptations to changing light environments. Our data may indicate that, in early stages of divergence, changes in opsin regulation could precede changes in opsin coding sequence evolution.


Assuntos
Ciclídeos/genética , Proteínas do Olho/genética , Animais , Evolução Biológica , Ciclídeos/metabolismo , Evolução Molecular , Proteínas do Olho/metabolismo , Expressão Gênica/genética , Especiação Genética , Variação Genética/genética , Lagos , Opsinas/genética , Células Fotorreceptoras de Vertebrados/fisiologia , Filogenia , Análise de Sequência de DNA/métodos , Especificidade da Espécie
12.
J Exp Zool B Mol Dev Evol ; 330(4): 202-214, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29904995

RESUMO

During early ontogeny, visual opsin gene expression in cichlids is influenced by prevailing light regimen. Red light, for example, leads to an early switch from the expression of short-wavelength sensitive to long-wavelength sensitive opsins. Here, we address the influence of light deprivation on opsin expression. Individuals reared in constant darkness during the first 14 days post-hatching (dph) showed a general developmental delay compared with fish reared under a 12:12 hr light-dark cycle (control group). Several characters including pigmentation patterns and eye development, appeared later in dark-reared individuals. Quantitative real-time PCR and fluorescent in situ hybridization at six time points during the 14 days period revealed that fish from the control group expressed opsin genes from 5 dph on and maintained a short-wavelength sensitive phenotype (sws1, rh2b, and rh2a). Onset of opsin expression in dark-reared Midas cichlids was delayed by 4 days and visual sensitivity rapidly progressed toward a long-wavelength sensitive phenotype (sws2b, rh2a, and lws). Shifts in visual sensitivities toward longer wavelengths are mediated by thyroid hormone (TH) in many vertebrates. Compared to control fish, dark-reared individuals showed elevated dio3 expression levels - a validated proxy for TH concentration - suggesting higher circulating TH levels. Despite decelerated overall development, ontogeny of opsin gene expression was accelerated, resulting in retinae with long-wavelength shifted predicted sensitivities compared to light-reared individuals. Indirect evidence suggests that this was due to altered TH metabolism.


Assuntos
Ciclídeos/genética , Opsinas dos Cones/genética , Luz , Adaptação Fisiológica/genética , Animais , Ciclídeos/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Retina/crescimento & desenvolvimento , Retina/efeitos da radiação , Transdução de Sinais , Hormônios Tireóideos/metabolismo
13.
Biol Lett ; 14(6)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875208

RESUMO

Only few fish species have successfully colonized subterranean habitats, but the underlying biological constraints associated with this are still poorly understood. Here, we investigated the influence of permanent darkness on spinal-column development in one species (Midas cichlid, Amphilophus citrinellus) with no known cave form, and one (Atlantic molly, Poecilia mexicana) with two phylogenetically young cave forms. Specifically, fish were reared under a normal light : dark cycle or in permanent darkness (both species). We also surveyed wild-caught cave and surface ecotypes of P. mexicana In both species, permanent darkness was associated with significantly higher rates of spinal deformities (especially in A. citrinellus). This suggests strong developmental (intrinsic) constraints on the successful colonization of subterranean environments in teleost fishes and might help explain the relative paucity of cave-adapted lineages. Our results add depth to our understanding of the aspects of selection driving trait divergence and maintaining reproductive isolation in cave faunas.


Assuntos
Cavernas , Escuridão , Escoliose/etiologia , Adaptação Fisiológica , Animais , Evolução Biológica , Ciclídeos , Ecótipo , Poecilia
14.
Mol Ecol ; 26(20): 5582-5593, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28792657

RESUMO

Colonization of novel habitats is typically challenging to organisms. In the initial stage after colonization, approximation to fitness optima in the new environment can occur by selection acting on standing genetic variation, modification of developmental patterns or phenotypic plasticity. Midas cichlids have recently colonized crater Lake Apoyo from great Lake Nicaragua. The photic environment of crater Lake Apoyo is shifted towards shorter wavelengths compared to great Lake Nicaragua and Midas cichlids from both lakes differ in visual sensitivity. We investigated the contribution of ontogeny and phenotypic plasticity in shaping the visual system of Midas cichlids after colonizing this novel photic environment. To this end, we measured cone opsin expression both during development and after experimental exposure to different light treatments. Midas cichlids from both lakes undergo ontogenetic changes in cone opsin expression, but visual sensitivity is consistently shifted towards shorter wavelengths in crater lake fish, which leads to a paedomorphic retention of their visual phenotype. This shift might be mediated by lower levels of thyroid hormone in crater lake Midas cichlids (measured indirectly as dio2 and dio3 gene expression). Exposing fish to different light treatments revealed that cone opsin expression is phenotypically plastic in both species during early development, with short and long wavelength light slowing or accelerating ontogenetic changes, respectively. Notably, this plastic response was maintained into adulthood only in the derived crater lake Midas cichlids. We conclude that the rapid evolution of Midas cichlids' visual system after colonizing crater Lake Apoyo was mediated by a shift in visual sensitivity during ontogeny and was further aided by phenotypic plasticity during development.


Assuntos
Adaptação Fisiológica/genética , Ciclídeos/genética , Opsinas dos Cones/genética , Luz , Animais , Ecossistema , Proteínas de Peixes/genética , Lagos , Nicarágua , Fenótipo , Hormônios Tireóideos/fisiologia , Visão Ocular/genética
15.
Mol Ecol ; 26(8): 2348-2362, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28133841

RESUMO

Sympatric speciation has been debated in evolutionary biology for decades. Although it has gained in acceptance recently, still only a handful of empirical examples are seen as valid (e.g. crater lake cichlids). In this study, we disentangle the role of hypertrophied lips in the repeated adaptive radiations of Nicaraguan crater lake cichlid fish. We assessed the role of disruptive selection and assortative mating during the early stages of divergence and found a functional trade-off in feeding behaviour between thick- and thin-lipped ecotypes, suggesting that this trait is a target of disruptive selection. Thick-lipped fish perform better on nonevasive prey at the cost of a poorer performance on evasive prey. Using enclosures in the wild, we found that thick-lipped fish perform significantly better in rocky than in sandy habitats. We found almost no mixed pairs during two breeding seasons and hence significant assortative mating. Genetic differentiation between ecotypes seems to be related to the time since colonization, being subtle in L. Masaya (1600 generations ago) and absent in the younger L. Apoyeque (<600 generations ago). Genome-wide differentiation between ecotypes was higher in the old source lakes than in the young crater lakes. Our results suggest that hypertrophied lips might be promoting incipient sympatric speciation through divergent selection (ecological divergence in feeding performance) and nonrandom mating (assortative mating) in the young Nicaraguan crater lakes. Nonetheless, further manipulative experiments are needed in order to confirm the role of hypertrophied lips as the main cue for assortative mating.


Assuntos
Ciclídeos/genética , Especiação Genética , Lábio/anatomia & histologia , Seleção Genética , Animais , Ciclídeos/anatomia & histologia , Ecótipo , Feminino , Hipertrofia , Lagos , Masculino , Nicarágua , Comportamento Predatório , Comportamento Sexual Animal , Simpatria
16.
J Anim Ecol ; 86(5): 1044-1053, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28502118

RESUMO

Genetically based stable colour polymorphisms provide a unique opportunity to study the evolutionary processes that preserve genetic variability in the wild. Different mechanisms are proposed to promote the stability of polymorphisms, but only few empirical examples have been documented, resulting in an incomplete understanding of these mechanisms. A remarkable genetically determined stable colour polymorphism is found in the Nicaraguan Midas cichlid species complex (Amphilophus cf. citrinellus). All Midas cichlids start their life with a dark-grey coloration (dark morph), but individuals carrying the dominant "gold" allele (c. 10%) lose their melanophores later in life, revealing the underlying orange coloration (gold morph). How this polymorphism is maintained remains unclear. Two main hypotheses have been proposed, both suggesting differential predation upon colour morphs as the proximate mechanism. One predicts that the conspicuous gold morph is more likely to be preyed upon, but this disadvantage is balanced by their competitive dominance over the dark morph. The second hypothesis suggests a rare morph advantage where the rarer gold morph experiences less predation. Empirical evidence for either of these mechanisms is still circumstantial and inconclusive. We conducted two field experiments in a Nicaraguan crater lake using wax models simulating both morphs to determine predation pressure upon Midas cichlid colour morphs. First, we tested the interaction of coloration and depth on attack rate. Second, we tested the interaction of fish size and coloration. We contrasted the pattern of attacks from these experiments to the predicted predation patterns from the hypotheses proposed to explain the colour polymorphism's stability. Large models imitating colour morphs were attacked at similar rates irrespectively of their position in the water column. Yet, attacks upon small models resembling juveniles were directed mainly towards dark models. This resulted in a significant size-by-colour interaction. We suggest that gold Midas cichlids experience a rare morph advantage as juveniles when individuals of this morph are extremely uncommon. But this effect is reduced or disappears among adults, where gold individuals are relatively more common. Thus, the interaction of rare morph advantage and conspicuousness, rather than either of those factors alone, is a likely mechanism resulting in the stability of the colour polymorphism in Midas cichlids.


Assuntos
Ciclídeos , Cor , Ouro , Animais , Comportamento Animal , Tamanho Corporal , Meio Ambiente , Lagos
17.
Conserv Biol ; 31(1): 86-95, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27253906

RESUMO

Large-scale infrastructure projects commonly have large effects on the environment. The planned construction of the Nicaragua Canal will irreversibly alter the aquatic environment of Nicaragua in many ways. Two distinct drainage basins (San Juan and Punta Gorda) will be connected and numerous ecosystems will be altered. Considering the project's far-reaching environmental effects, too few studies on biodiversity have been performed to date. This limits provision of robust environmental impact assessments. We explored the geographic distribution of taxonomic and genetic diversity of freshwater fish species (Poecilia spp., Amatitlania siquia, Hypsophrys nematopus, Brycon guatemalensis, and Roeboides bouchellei) across the Nicaragua Canal zone. We collected population samples in affected areas (San Juan, Punta Gorda, and Escondido drainage basins), investigated species composition of 2 drainage basins and performed genetic analyses (genetic diversity, analysis of molecular variance) based on mitochondrial cytb. Freshwater fish faunas differed substantially between drainage basins (Jaccard similarity = 0.33). Most populations from distinct drainage basins were genetically differentiated. Removing the geographic barrier between these basins will promote biotic homogenization and the loss of unique genetic diversity. We found species in areas where they were not known to exist, including an undescribed, highly distinct clade of live bearing fish (Poecilia). Our results indicate that the Nicaragua Canal likely will have strong impacts on Nicaragua's freshwater biodiversity. However, knowledge about the extent of these impacts is lacking, which highlights the need for more thorough investigations before the environment is altered irreversibly.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Peixes , Animais , Biodiversidade , Nicarágua , Zona do Canal do Panamá
18.
Mol Biol Evol ; 32(11): 2876-82, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26187436

RESUMO

The visual system in the colorful cichlid fishes from the African great lakes is believed to be important for their adaptive radiations. However, few studies have attempted to compare the visual system of radiating cichlid lineages with that of cichlids that have not undergone recent radiations. One such study published in this journal (Schott RK, Refvik SP, Hauser FE, López-Fernández H, Chang BSW. 2014. Divergent positive selection in rhodopsin from lake and riverine cichlid fishes. Mol Biol Evol. 31:1149-1165) found divergent selection on rhodopsin between African lacustrine and riverine cichlid species and riverine Neotropical cichlids, concluding that ecology drives the molecular evolution of this opsin. Here, we expand this analysis by incorporating rhodopsin sequences from Neotropical lacustrine cichlids and show that both ecology and phylogeny are important drivers of the molecular evolution of rhodopsin in cichlids. We found little overlap of sites under selection between African and Neotropical lineages and a faster rate of molecular evolution in African compared with Neotropical cichlids. These results support the notion that genetic or population genetic features particular to African cichlids contributed to their radiations.


Assuntos
Ciclídeos/genética , Rodopsina/genética , Animais , Ciclídeos/metabolismo , Ecologia , Evolução Molecular , Variação Genética , Genética Populacional , Lagos , Filogenia , Rodopsina/metabolismo
19.
Am Nat ; 183(2): 290-300, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24464202

RESUMO

Nonparallel evolution, where independent populations occupy similar environments but show phenotypic differences, can uncover previously ignored selective factors. We investigated a nonparallelism in the life-history strategy of a Trinidadian guppy population, a system famous for parallel adaptation to differences in predation risk. We tested the hypothesis that high mortality drives an observed fast life-history pattern (i.e., earlier maturation and more frequent reproductive events) that is atypical for a low-predation environment. Using mark-recapture techniques, we compared neighboring low-predation populations, finding significantly higher mortality rates in the population with atypical life-history traits. Mortality was elevated during the wet season, when flooding was common. Moreover, individuals from the anomalous population were more likely to transition from healthy to infected disease states. Our results stand out against previous patterns observed in this system, indicating that higher mortality caused by disease and flooding may have selected for a faster life history. Thus, we highlight that even in systems famous for parallel adaptation, variation in selective pressures can result in nonparallel phenotypic evolution.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Poecilia/fisiologia , Animais , Feminino , Doenças dos Peixes/epidemiologia , Inundações , Masculino , Reprodução , Rios , Trinidad e Tobago
20.
Genome Biol Evol ; 16(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38860496

RESUMO

Determining how internal and external stimuli interact to determine developmental trajectories of traits is a challenge that requires the integration of different subfields of biology. Internal stimuli, such as hormones, control developmental patterns of phenotypic changes, which might be modified by external environmental cues (e.g. plasticity). Thyroid hormone (TH) modulates the timing of opsin gene expression in developing Midas cichlid fish (Amphilophus citrinellus). Moreover, fish reared in red light accelerate this developmental timing compared to fish reared in white light. Hence, we hypothesized that plasticity caused by variation in light conditions has coopted the TH signaling pathway to induce changes in opsin gene expression. We treated Midas cichlids with TH and crossed this treatment with two light conditions, white and red. We observed that not only opsin expression responded similarly to TH and red light but also that, at high TH levels, there is limited capacity for light-induced plasticity. Transcriptomic analysis of the eye showed that genes in the TH pathway were affected by TH, but not by light treatments. Coexpression network analyses further suggested that response to light was independent of the response to TH manipulations. Taken together, our results suggest independent mechanisms mediating development and plasticity during development of opsin gene expression, and that responses to environmental stimuli may vary depending on internal stimuli. This conditional developmental response to external factors depending on internal ones (e.g. hormones) might play a fundamental role in the patterns of phenotypic divergence observed in Midas cichlids and potentially other organisms.


Assuntos
Ciclídeos , Luz , Opsinas , Animais , Ciclídeos/genética , Opsinas/genética , Opsinas/metabolismo , Hormônios Tireóideos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA