Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Math Biol ; 88(3): 39, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441655

RESUMO

The presence or absence of synaptic plasticity can dramatically influence the collective behavior of populations of coupled neurons. In this work, we consider spike-timing dependent plasticity (STDP) and its resulting influence on phase cohesion in computational models of heterogeneous populations of conductance-based neurons. STDP allows for the influence of individual synapses to change over time, strengthening or weakening depending on the relative timing of the relevant action potentials. Using phase reduction techniques, we derive an upper bound on the critical coupling strength required to retain phase cohesion for a network of synaptically coupled, heterogeneous neurons with STDP. We find that including STDP can significantly alter phase cohesion as compared to a network with static synaptic connections. Analytical results are validated numerically. Our analysis highlights the importance of the relative ordering of action potentials emitted in a population of tonically firing neurons and demonstrates that order switching can degrade the synchronizing influence of coupling when STDP is considered.


Assuntos
Plasticidade Neuronal , Neurônios , Potenciais de Ação
2.
Chaos ; 32(3): 033130, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35364826

RESUMO

Deep brain stimulation (DBS) is a commonly used treatment for medication resistant Parkinson's disease and is an emerging treatment for other neurological disorders. More recently, phase-specific adaptive DBS (aDBS), whereby the application of stimulation is locked to a particular phase of tremor, has been proposed as a strategy to improve therapeutic efficacy and decrease side effects. In this work, in the context of these phase-specific aDBS strategies, we investigate the dynamical behavior of large populations of coupled neurons in response to near-periodic stimulation, namely, stimulation that is periodic except for a slowly changing amplitude and phase offset that can be used to coordinate the timing of applied input with a specified phase of model oscillations. Using an adaptive phase-amplitude reduction strategy, we illustrate that for a large population of oscillatory neurons, the temporal evolution of the associated phase distribution in response to near-periodic forcing can be captured using a reduced order model with four state variables. Subsequently, we devise and validate a closed-loop control strategy to disrupt synchronization caused by coupling. Additionally, we identify strategies for implementing the proposed control strategy in situations where underlying model equations are unavailable by estimating the necessary terms of the reduced order equations in real-time from observables.


Assuntos
Neurônios , Doença de Parkinson , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA