Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 67: 116764, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35635928

RESUMO

It is known that p53 is an important transcription factor and plays a central role in ionizing radiation (IR)-induced DNA damage responses such as cell cycle arrest, DNA repair and apoptosis. We previously reported that regulating p53 protein is an effective strategy for modulating cell fate by reducing the acute side effects of radiation therapy. Herein, we report on the discovery of STK160830 as a new radioprotector from a chemical library at The University of Tokyo and the design, synthesis and biological evaluation of its derivatives. The radioprotective activity of STK160830 itself and its derivatives that were synthesized in this work was evaluated using a leukemia cell line, MOLT-4 cells as a model of normal cells that express the p53 protein in a structure-activity relationships (SAR) study. The experimental results suggest that a direct relationship exists between the inhibitory effect of these STK160830 derivatives on the expression level of p53 and their radioprotective activity and that the suppression of p53 by STK160830 derivatives contribute to protecting MOLT-4 cells from apoptosis that is induced by exposure to radiation.


Assuntos
Apoptose , Proteína Supressora de Tumor p53 , Dano ao DNA , Reparo do DNA , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA