Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Pflugers Arch ; 475(3): 361-379, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36534232

RESUMO

Mechanisms of synergistic agonist stimulation and modulation of the electrochemical driving force for anion secretion are still not fully explored in human pancreatic duct epithelial cells. The first objective of this study was therefore to test whether combined agonist stimulation augments anion transport responses in the Capan-1 monolayer model of human pancreatic duct epithelium. The second objective was to test the influence of H+,K+-ATPase inhibition on anion transport in Capan-1 monolayers. The third objective was to analyze the expression and function of K+ channels in Capan-1, which could support anion secretion and cooperate with H+,K+-ATPases in pH and potassium homeostasis. The human pancreatic adenocarcinoma cell line Capan-1 was cultured conventionally or as polarized monolayers that were analyzed by Ussing chamber electrophysiological recordings. Single-cell intracellular calcium was assayed with Fura-2. mRNA isolated from Capan-1 was analyzed by use of the nCounter assay or RT-PCR. Protein expression was assessed by immunofluorescence and western blot analyses. Combined stimulation with different physiological agonists enhanced anion transport responses compared to single agonist stimulation. The responsiveness of Capan-1 cells to histamine was also revealed in these experiments. The H+,K+-ATPase inhibitor omeprazole reduced carbachol- and riluzole-induced anion transport responses. Transcript analyses revealed abundant TASK-2, TWIK-1, TWIK-2, TASK-5, KCa3.1, and KCNQ1 mRNA expression. KCNE1 mRNA and TREK-1, TREK-2, TASK-2, and KCNQ1 protein expression were also shown. This study shows that the Capan-1 model recapitulates key physiological aspects of a bicarbonate-secreting epithelium and constitutes a valuable model for functional studies on human pancreatic duct epithelium.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Ductos Pancreáticos , Células Epiteliais/metabolismo , Bicarbonatos/metabolismo , RNA Mensageiro/metabolismo , Adenosina Trifosfatases/metabolismo
2.
Hepatobiliary Pancreat Dis Int ; 20(3): 279-284, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33947634

RESUMO

BACKGROUND: To study novel treatment modalities for pancreatic ductal adenocarcinoma (PDAC), we need to transfer the knowledge from in vitro to in vivo. It is important to mirror the clinical characteristics of the typically local invasive growth of pancreatic cancer and the distant spread resulting in liver metastasis. Notably, for xenotransplant studies using human specimen, two models, i.e. subcutaneous (s.c.) and orthotopic (o.t.) transplantation are widely used. METHODS: The subcutaneously and orthotopically inoculated Colo357 Bcl-xL cell-derived tumors were directly compared with and without TNF-related apoptosis inducing ligand (TRAIL) treatment. The size of primary tumors, number of liver metastasis and the histologic markers Ki67, M30, TNF-α and CD31 were assessed. RESULTS: Upon TRAIL treatment, the primary tumors did not change their size, neither in the s.c. nor in the o.t. approaches. But when s.c. was compared to o.t., the size of the s.c. tumors was more than two-fold bigger than that of the o.t. tumors (P < 0.01). However, mice with orthotopically inoculated PDAC cells developed liver metastasis upon TRAIL treatment much more frequently (n = 13/17) than mice with subcutaneously inoculated PDAC cells (n = 1/11) (P < 0.01). As a likely driving force for this increased metastasis, a higher TNF-α staining intensity in the o.t. tumors was observed by immunohistochemistry. CONCLUSIONS: These data from a direct side-by-side comparison underline the importance of the proper inoculation site of the PDAC cells. Local invasion and liver metastases are a hallmark of PDAC in the clinic; the o.t. model is clearly superior in reflecting this setting. Moreover, a serious side-effect of a possible new therapeutic compound became obvious only in the o.t.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Ligante Indutor de Apoptose Relacionado a TNF , Fator de Necrose Tumoral alfa , Neoplasias Pancreáticas
3.
BMC Cancer ; 20(1): 264, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228510

RESUMO

BACKGROUND: The human pancreatic cancer cell line A818-6 can be grown in vitro either as a highly malignant, undifferentiated monolayer (ML) or as three-dimensional (3D) single layer hollow spheres (HS) simulating a benign, highly differentiated, duct-like pancreatic epithelial structure. This characteristic allowing A818-6 cells to switch from one phenotype to another makes these cells a unique system to characterize the cellular and molecular modifications during differentiation on one hand and malignant transformation on the other hand. Ion channels and transport proteins (transportome) have been implicated in malignant transformation. Therefore, the current study aimed to analyse the transportome gene expression profile in the A818-6 cells growing as a monolayer or as hollow spheres. METHODS & RESULTS: The study identified the differentially expressed transportome genes in both cellular states of A818-6 using Agilent and Nanostring arrays and some targets were validated via immunoblotting. Additionally, these results were compared to a tissue Affymetrix microarray analysis of pancreatic adenocarcinoma patients' tissues. The overall transcriptional profile of the ML and HS cells confirmed the formerly described mesenchymal features of ML and epithelial nature of HS which was further verified via high expression of E-cadherin and low expression of vimentin found in HS in comparison to ML. Among the predicted features between HS and ML was the involvement of miRNA-9 in this switch. Importantly, the bioinformatics analysis also revealed substantial number (n = 126) of altered transportome genes. Interestingly, three genes upregulated in PDAC tissue samples (GJB2, GJB5 and SLC38A6) were found to be also upregulated in ML and 3 down-regulated transportome genes (KCNQ1, TRPV6 and SLC4A) were also reduced in ML. CONCLUSION: This reversible HS/ML in vitro system might help in understanding the pathophysiological impact of the transportome in the dedifferentiation process in pancreatic carcinogenesis. Furthermore, the HS/ML model represents a novel system for studying the role of the transportome during the switch from a more benign, differentiated (HS) to a highly malignant, undifferentiated (ML) phenotype.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Transcriptoma/genética , Adenocarcinoma/patologia , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Caderinas/genética , Caderinas/metabolismo , Carcinogênese/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Plasticidade Celular , Biologia Computacional , Conexina 26 , Conexinas/genética , Conexinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Neoplasias Pancreáticas/patologia
4.
Arch Gynecol Obstet ; 301(6): 1493-1502, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32170411

RESUMO

PURPOSE: Bone metastasis in breast cancer has been linked to activity of c-Src kinase, one of the extensively explored tyrosine kinases in cell biology. The impact of TNF-related apoptosis inducing ligand (TRAIL) and TRAIL receptors has just recently been integrated into this conception. METHODS: An osteotropic clone of MDA-MB-231 cells simulated a model for bone metastasis of triple-negative breast cancer (TNBC). The effects of Dasatinib, a clinically established inhibitor of Src kinases family and Abl were evaluated in vitro and in vivo. In vivo effects of Dasatinib treatment on the occurrence of skeletal metastases were tested in a xenograft mouse model after intra-cardiac injection of osteotropic MDA-MB-231-cells. Ex vivo analyses of the bone sections confirmed intraosseous growth of metastases and allowed determination of osteoclastic activity. RESULTS: Treatment of osteotropic MDA-MB-231 cells with Dasatinib inhibited proliferation rates in vitro. A shift in TRAIL-receptor expression towards an induction of oncogenic TRAIL-R2 was observed. In vivo, 15 of 30 mice received an intra-peritoneal treatment with Dasatinib. These mice showed significantly less skeletal metastases in bioluminescence scans. Moreover, a pronounced increase in bone volume was observed in the treatment group, as detected by µ-Computed Tomography. Dasatinib treatment also led to a greater increase in bone density in tibiae without metastatic affection, which was accompanied by reduced recruitment of osteoclasts. CONCLUSION: Our observations support the concept of utilizing Dasatinib in targeting early-stage bone metastatic TNBC and sustaining bone health.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Ósseas/secundário , Dasatinibe/uso terapêutico , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Dasatinibe/farmacologia , Modelos Animais de Doenças , Feminino , Xenoenxertos , Camundongos , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
BMC Cancer ; 18(1): 777, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30064384

RESUMO

BACKGROUND: The death receptors TRAIL-R1 and TRAIL-R2 are frequently overexpressed in cancer and there is an emerging evidence for their important role in malignant progression, also in the case of pancreatic ductal adenocarcinoma (PDAC). In their canonical localization at the plasma membrane, TRAIL-R1/-R2 may induce cell death and/or pro-inflammatory signaling leading to cell migration, invasion and metastasis. Although, they have repeatedly been found intracellular, in the cytoplasm and in the nucleus, their functions in intracellular locations are still not well understood. Likewise, studies dealing with the prognostic relevance of TRAIL-Rs located in particular cellular compartments are very rare. For PDAC, the correlation of nuclear TRAIL-R2 with worse patients' prognosis has been shown recently. Corresponding data on TRAIL-R1 are not available so far. METHODS: In the present study we analyzed the expression of TRAIL-R1 in 106 PDACs and 28 adjacent, peritumoral non-malignant pancreatic ducts with special emphasis on its cytoplasmic and nuclear localization and correlated the immunohistochemical findings with clinico-pathological patient characteristics. RESULTS: TRAIL-R1 was found in 93.4% of all PDAC samples. Cytoplasmic staining was present with very similar intensity in tumor and normal tissue. In contrast, nuclear TRAIL-R1 staining was significantly stronger in tumor compared to normal tissue (p = 0.006). Interestingly, we found that the number of cells with cytoplasmic TRAIL-R1 staining negatively correlates with tumor grading (p = 0.043). No such correlation could be detected for nuclear TRAIL-R1. Neither, cytoplasmic nor nuclear TRAIL-R1 staining showed a correlation with other clinico-pathological parameter such as pTNM categories. However, Kaplan-Meier analyses revealed significantly prolonged median survival of patients with positive cytoplasmic TRAIL-R1 expression in more than 80% of tumor cells compared to patients with tumors containing a smaller quantity of cells positively stained for cytoplasmic TRAIL-R1 (20 vs. 8 months; p = 0.004). CONCLUSION: Cytoplasmic TRAIL-R1 is a positive prognostic marker for patients with PDAC. Our findings indicate that loss of cytoplasmic TRAIL-R1 results in recurrent disease with more malignant phenotype thus suggesting anti-tumor activities of cytoplasmic TRAIL-R1 in PDAC.


Assuntos
Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Idoso , Idoso de 80 Anos ou mais , Carcinoma Ductal Pancreático/química , Estudos de Casos e Controles , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Pâncreas/química , Pâncreas/metabolismo , Neoplasias Pancreáticas/química , Prognóstico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/análise
6.
Gastroenterology ; 146(1): 278-90, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24120475

RESUMO

BACKGROUND & AIMS: Tumor necrosis factor-related apoptosis inducing ligand (TRAIL-R1) (TNFRSF10A) and TRAIL-R2 (TNFRSF10B) on the plasma membrane bind ligands that activate apoptotic and other signaling pathways. Cancer cells also might have TRAIL-R2 in the cytoplasm or nucleus, although little is known about its activities in these locations. We investigated the functions of nuclear TRAIL-R2 in cancer cell lines. METHODS: Proteins that interact with TRAIL-R2 initially were identified in pancreatic cancer cells by immunoprecipitation, mass spectrometry, and immunofluorescence analyses. Findings were validated in colon, renal, lung, and breast cancer cells. Functions of TRAIL-R2 were determined from small interfering RNA knockdown, real-time polymerase chain reaction, Drosha-activity, microRNA array, proliferation, differentiation, and immunoblot experiments. We assessed the effects of TRAIL-R2 overexpression or knockdown in human pancreatic ductal adenocarcinoma (PDAC) cells and their ability to form tumors in mice. We also analyzed levels of TRAIL-R2 in sections of PDACs and non-neoplastic peritumoral ducts from patients. RESULTS: TRAIL-R2 was found to interact with the core microprocessor components Drosha and DGCR8 and the associated regulatory proteins p68, hnRNPA1, NF45, and NF90 in nuclei of PDAC and other tumor cells. Knockdown of TRAIL-R2 increased Drosha-mediated processing of the let-7 microRNA precursor primary let-7 (resulting in increased levels of mature let-7), reduced levels of the let-7 targets (LIN28B and HMGA2), and inhibited cell proliferation. PDAC tissues from patients had higher levels of nuclear TRAIL-R2 than non-neoplastic pancreatic tissue, which correlated with increased nuclear levels of HMGA2 and poor outcomes. Knockdown of TRAIL-R2 in PDAC cells slowed their growth as orthotopic tumors in mice. Reduced nuclear levels of TRAIL-R2 in cultured pancreatic epithelial cells promoted their differentiation. CONCLUSIONS: Nuclear TRAIL-R2 inhibits maturation of the microRNA let-7 in pancreatic cancer cell lines and increases their proliferation. Pancreatic tumor samples have increased levels of nuclear TRAIL-R2, which correlate with poor outcome of patients. These findings indicate that in the nucleus, death receptors can function as tumor promoters and might be therapeutic targets.


Assuntos
Apoptose/fisiologia , Carcinoma Ductal Pancreático/metabolismo , MicroRNAs/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/metabolismo , Humanos , Neoplasias Renais/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos SCID , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/fisiologia
7.
BMC Cancer ; 14: 74, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24507727

RESUMO

BACKGROUND: The cytokine TRAIL represents one of the most promising candidates for the apoptotic elimination of tumor cells, either alone or in combination therapies. However, its efficacy is often limited by intrinsic or acquired resistance of tumor cells to apoptosis. Programmed necrosis is an alternative, molecularly distinct mode of programmed cell death that is elicited by TRAIL under conditions when the classical apoptosis machinery fails or is actively inhibited. The potential of TRAIL-induced programmed necrosis in tumor therapy is, however, almost completely uncharacterized. We therefore investigated its impact on a panel of tumor cell lines of wide-ranging origin. METHODS: Cell death/viability was measured by flow cytometry/determination of intracellular ATP levels/crystal violet staining. Cell surface expression of TRAIL receptors was detected by flow cytometry, expression of proteins by Western blot. Ceramide levels were quantified by high-performance thin layer chromatography and densitometric analysis, clonogenic survival of cells was determined by crystal violet staining or by soft agarose cloning. RESULTS: TRAIL-induced programmed necrosis killed eight out of 14 tumor cell lines. Clonogenic survival was reduced in all sensitive and even one resistant cell lines tested. TRAIL synergized with chemotherapeutics in killing tumor cell lines by programmed necrosis, enhancing their effect in eight out of 10 tested tumor cell lines and in 41 out of 80 chemotherapeutic/TRAIL combinations. Susceptibility/resistance of the investigated tumor cell lines to programmed necrosis seems to primarily depend on expression of the pro-necrotic kinase RIPK3 rather than the related kinase RIPK1 or cell surface expression of TRAIL receptors. Furthermore, interference with production of the lipid ceramide protected all tested tumor cell lines. CONCLUSIONS: Our study provides evidence that TRAIL-induced programmed necrosis represents a feasible approach for the elimination of tumor cells, and that this treatment may represent a promising new option for the future development of combination therapies. Our data also suggest that RIPK3 expression may serve as a potential predictive marker for the sensitivity of tumor cells to programmed necrosis and extend the previously established role of ceramide as a key mediator of death receptor-induced programmed necrosis (and thus as a potential target for future therapies) also to the tumor cell lines examined here.


Assuntos
Apoptose/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/intoxicação , Antineoplásicos/intoxicação , Western Blotting , Morte Celular/genética , Citometria de Fluxo/métodos , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , Necrose/patologia , Necrose/prevenção & controle , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Células U937
8.
Hepatobiliary Pancreat Dis Int ; 12(1): 94-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23392805

RESUMO

BACKGROUND: The death ligand, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), induces apoptosis and non-apoptotic signaling in some tumor cells. The purpose of this study was to investigate the roles of the pro-apoptotic TRAIL receptors, TRAIL-R1 and TRAIL-R2, as well as Bcl-xL and TRAF2 in TRAIL-induced expression of the pro-inflammatory cytokine IL-8 and the invasion-promoting protein urokinase (uPA) in pancreatic ductal adenocarcinoma (PDAC) cells. METHODS: Colo357wt, Colo357/TRAF2, Colo357/Bcl-xL, Panc89 and PancTuI cells were stimulated with TRAIL and uPA and IL-8 expression was detected using real-time PCR. Antagonistic, receptor-specific antibodies were used to investigate the effects of TRAIL-R1 or TRAIL-R2 inhibition. RESULTS: Dose-dependent increases in uPA and IL-8 expression were detected following TRAIL stimulation in PDAC cells. These effects were inhibited when TRAIL-R1 but not TRAIL-R2 was blocked. Overexpression of TRAF2 or Bcl-xL strongly increased TRAIL-mediated upregulation of uPA and IL-8. CONCLUSIONS: In PDAC cells, TRAIL strongly induced uPA and IL-8 via TRAIL-R1. This response was further enhanced in cells overexpressing TRAF2 and Bcl-xL. Therefore, inhibition of the non-apoptotic "side-effects" of TRAIL treatments by inactivation of TRAF2 and Bcl-xL might represent additional relevant strategies for the treatment of pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/genética , Interleucina-8/genética , Neoplasias Pancreáticas/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética , Proteína bcl-X/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/terapia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/terapia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator 2 Associado a Receptor de TNF/genética , Regulação para Cima/fisiologia
9.
J Immunol ; 185(3): 1593-605, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20610643

RESUMO

TNF-like weak inducer of apoptosis, TWEAK, is a typical member of the TNF ligand family. Thus, it is initially expressed as a type II transmembrane protein from which a soluble variant can be released by proteolytic processing. In this study, we show that membrane TWEAK is superior to soluble variant of TWEAK (sTWEAK) with respect to the activation of the classical NF-kappaB pathway, whereas both TWEAK variants are potent inducers of TNFR-associated factor-2 depletion, NF-kappaB-inducing kinase accumulation and p100 processing, hallmarks of activation of the noncanonical NF-kappaB pathway. Like other soluble TNF ligands with a poor capability to activate their corresponding receptor, sTWEAK acquires an activity resembling those of the transmembrane ligand by oligomerization or cell surface-immobilization. Blockade of the Fn14 receptor inhibited NF-kappaB signaling irrespective of the TWEAK form used for stimulation, indicating that the differential activities of the two TWEAK variants on classical and noncanonical NF-kappaB signaling is not related to the use of different receptors.


Assuntos
Proteínas de Membrana/fisiologia , NF-kappa B/metabolismo , Receptores do Fator de Necrose Tumoral/fisiologia , Transdução de Sinais/imunologia , Animais , Apoptose/imunologia , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Células HT29 , Células HeLa , Humanos , Ligantes , Proteínas de Membrana/genética , Camundongos , NF-kappa B/fisiologia , Subunidade p52 de NF-kappa B/metabolismo , Processamento de Proteína Pós-Traducional/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Proteínas Recombinantes/metabolismo , Solubilidade , Fator 2 Associado a Receptor de TNF/antagonistas & inibidores , Fator 2 Associado a Receptor de TNF/metabolismo , Receptor de TWEAK , Quinase Induzida por NF-kappaB
10.
Front Cell Dev Biol ; 10: 768579, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281089

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an important mediator of tumor immune surveillance. In addition, its potential to kill cancer cells without harming healthy cells led to the development of TRAIL receptor agonists, which however did not show the desired effects in clinical trials. This is caused mainly by apoptosis resistance mechanisms operating in primary cancer cells. Meanwhile, it has been realized that in addition to cell death, TRAIL also induces non-apoptotic pro-inflammatory pathways that may enhance tumor malignancy. Due to its late detection and resistance to current therapeutic options, pancreatic ductal adenocarcinoma (PDAC) is still one of the deadliest types of cancer worldwide. A dysregulated pH microenvironment contributes to PDAC development, in which the cancer cells become highly dependent on to maintain their metabolism. The impact of extracellular pH (pHe) on TRAIL-induced signaling in PDAC cells is poorly understood so far. To close this gap, we analyzed the effects of acidic and alkaline pHe, both in short-term and long-term settings, on apoptotic and non-apoptotic TRAIL-induced signaling. We found that acidic and alkaline pHe differentially impact TRAIL-induced responses, and in addition, the duration of the pHe exposition also represents an important parameter. Thus, adaptation to acidic pHe increases TRAIL sensitivity in two different PDAC cell lines, Colo357 and Panc1, one already TRAIL-sensitive and the other TRAIL-resistant, respectively. However, the latter became highly TRAIL-sensitive only by concomitant inhibition of Bcl-xL. None of these effects was observed under other pHe conditions studied. Both TRAIL-induced non-apoptotic signaling pathways, as well as constitutively expressed anti-apoptotic proteins, were regulated by acidic pHe. Whereas the non-apoptotic pathways were differently affected in Colo357 than in Panc1 cells, the impact on the anti-apoptotic protein levels was similar in both cell lines. In Panc1 cells, adaptation to either acidic or alkaline pHe blocked the activation of the most of TRAIL-induced non-apoptotic pathways. Interestingly, under these conditions, significant downregulation of the plasma membrane levels of TRAIL-R1 and TRAIL-R2 was observed. Summing up, extracellular pH influences PDAC cells' response to TRAIL with acidic pHe adaptation, showing the ability to strongly increase TRAIL sensitivity and in addition to inhibit TRAIL-induced pro-inflammatory signaling.

11.
Front Cell Dev Biol ; 10: 942718, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158196

RESUMO

Binding of TRAIL to its death domain-containing receptors TRAIL-R1 and TRAIL-R2 can induce cell death and/or pro-inflammatory signaling. The importance of TRAIL and TRAIL-R1/R2 in tumor immune surveillance and cancer biology has meanwhile been well documented. In addition, TRAIL has been shown to preferentially kill tumor cells, raising hope for the development of targeted anti-cancer therapies. Apart from death-inducing receptors, TRAIL also binds to TRAIL-R3 and TRAIL-R4. Whereas TRAIL-R3 is lacking an intracellular domain entirely, TRAIL-R4 contains a truncated death domain but still a signaling-competent intracellular part. It is assumed that these receptors have anti-apoptotic, yet still not well understood regulatory functions. To analyze the significance of the endogenous levels of TRAIL-R4 for TRAIL-induced signaling in cancer cells, we stably knocked down this receptor in Colo357 and MDA-MB-231 cells and analyzed the activation of apoptotic and non-apoptotic pathways in response to treatment with TRAIL. We found that TRAIL-R4 affects a plethora of signaling pathways, partly in an opposite way. While knockdown of TRAIL-R4 in Colo357 strongly increased apoptosis and reduced clonogenic survival, it inhibited cell death and improved clonogenic survival of MDA-MB-231 cells after TRAIL treatment. Furthermore, TRAIL-R4 turned out to be an important regulator of the expression of a variety of anti-apoptotic proteins in MDA-MB-231 cells since TRAIL-R4-KD reduced the cellular levels of FLIPs, XIAP and cIAP2 but upregulated the levels of Bcl-xL. By inhibiting Bcl-xL with Navitoclax, we could finally show that this protein mainly accounts for the acquired resistance of MDA-MB-231 TRAIL-R4-KD cells to TRAIL-induced apoptosis. Analyses of non-apoptotic signaling pathways revealed that in both cell lines TRAIL-R4-KD resulted in a constitutively increased activity of AKT and ERK, while it reduced AKT activity after TRAIL treatment. Furthermore, TRAIL-R4-KD potentiated TRAIL-induced activation of ERK and p38 in Colo357, and NF-κB in MDA-MB-231 cells. Importantly, in both cell lines the activity of AKT, ERK, p38 and NF-κB after TRAIL treatment was higher in TRAIL-R4-KD cells than in respective control cells. Thus, our data provide evidence for the important regulatory functions of endogenous TRAIL-R4 in cancer cells and improve our understanding of the very complex human TRAIL/TRAIL-R system.

12.
Cancer Sci ; 102(4): 728-34, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21241417

RESUMO

Green tea catechins are considered as possible cancer preventive agents for several cancer types but little is known regarding their effects on pancreatic cancer cells. The best studied catechin and the major polyphenol present in green tea is epigallocatechin gallate (EGCG). In the present study, we investigated the in vitro anti-tumoral properties of EGCG on human pancreatic ductal adenocarcinoma (PDAC) cells PancTu-I, Panc1, Panc89 and BxPC3 in comparison with the effects of two minor components of green tea catechins, catechin gallate (CG) and epicatechin gallate (ECG). We found that all three catechins inhibited proliferation of PDAC cells in a dose- and time-dependent manner. Interestingly, CG and ECG exerted much stronger anti-proliferative effects than EGCG. Western blot analyses performed with PancTu-I cells revealed catechin-mediated modulation of cell cycle regulatory proteins (cyclins, cyclin-dependent kinases [CDK], CDK inhibitors). Again, these effects were clearly more pronounced in CG or ECG than in EGCG-treated cells. Importantly, catechins, in particular ECG, inhibited TNFα-induced activation of NF-κB and consequently secretion of pro-inflammatory and invasion promoting proteins like IL-8 and uPA. Overall, our data show that green tea catechins ECG and CG exhibit potent and much stronger anti-proliferative and anti-inflammatory activities on PDAC cells than the most studied catechin EGCG.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antineoplásicos/uso terapêutico , Catequina/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Western Blotting , Carcinoma Ductal Pancreático/tratamento farmacológico , Catequina/uso terapêutico , Ciclo Celular/efeitos dos fármacos , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Humanos , Chá , Células Tumorais Cultivadas
13.
BMC Med Imaging ; 11: 15, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21699694

RESUMO

BACKGROUND: With the development of increasingly sophisticated three-dimensional volumetric imaging methods, tumor volume can serve as a robust and reproducible measurement of drug efficacy. Since the use of molecularly targeted agents in the clinic will almost certainly involve combinations with other therapeutic modalities, the use of volumetric determination can help to identify a dosing schedule of sequential combinations of cytostatic drugs resulting in long term control of tumor growth with minimal toxicity. The aim of this study is to assess high resolution sonography imaging for the in vivo monitoring of efficacy of Infliximab in pancreatic tumor. METHODS: In the first experiment, primary orthotopic pancreatic tumor growth was measured with Infliximab treatment. In the second experiment, orthotopic tumors were resected ten days after inoculation of tumor cells and tumor recurrence was measured following Infliximab treatment. Tumor progression was evaluated using 3D high resolution sonography. RESULTS: Sonography measurement of tumor volume in vivo showed inhibitory effect of Infliximab on primary tumor growth in both non-resected and resected models. Measurement of the dynamics of tumor growth by sonography revealed that in the primary tumor Infliximab is effective against established tumors while in the resection model, Infliximab is more effective at an early stage following tumor resection. Infliximab treatment is also effective in inhibiting tumor growth growth as a result of tumor cell contamination of the surgical field. CONCLUSIONS: Clinical application of Infliximab is feasible in both the neoadjuvant and adjuvant setting. Infliximab is also effective in slowing the growth of tumor growth under the peritoneum and may have application in treating peritoneal carcinomatosis. Finally the study demonstrates that high resolution sonography is a sensitive imaging modality for the measurement of pancreatic tumor growth.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Análise de Variância , Animais , Modelos Animais de Doenças , Feminino , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Infliximab , Camundongos , Camundongos SCID , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , Reprodutibilidade dos Testes , Carga Tumoral , Ultrassonografia
14.
J Cancer Res Clin Oncol ; 147(11): 3313-3324, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34302528

RESUMO

PURPOSE: HMGA2 has frequently been found in benign as well as malignant tumors and a significant association between HMGA2 overexpression and poor survival in different malignancies was described. In pancreatic ductal adenocarcinoma (PDAC), nuclear HMGA2 expression is associated with tumor dedifferentiation and presence of lymph node metastasis. Nevertheless, the impact of HMGA2 occurrence in other cell compartments is unknown. METHODS: Intracellular distribution of HMGA2 was analyzed in PDAC (n = 106) and peritumoral, non-malignant ducts (n = 28) by immunohistochemistry. Findings were correlated with clinico-pathological data. Additionally, intracellular HMGA2 presence was studied by Western blotting of cytoplasmic and nuclear fractions of cultured cells. RESULTS: HMGA2 was found in the cytoplasm and in the nucleus of cultured cells. In human tumor tissue, HMGA2 was also frequently found in the cytoplasm and the nucleus of tumor cells, however, nuclear staining was generally stronger. Direct comparison from tumor tissue with corresponding non-neoplastic peritumoral tissue revealed significantly stronger expression in tumors (p = 0.003). Of note, the nuclear staining was significantly stronger in lymph node metastatic cell nuclei compared to primary tumor cell nuclei (p = 0.049). Interestingly, cytoplasmic staining positively correlated with lymph vessel (p = 0.004) and venous invasion (p = 0.046). CONCLUSION: HMGA2 is a prognostic marker in PDAC. Firstly, we found a positive correlation for cytoplasmic HMGA2 expression with lympho-vascular invasion and, secondly, we found a significantly stronger nuclear expression of HMGA2 in cancer-positive lymph node nuclei compared to primary tumor cell nuclei. So far, the role of cytoplasmic HMGA2 is nearly unknown, however, our data lend support to the hypothesis that cytoplasmic HMGA2 expression is involved in nodal spread.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Proteína HMGA2/biossíntese , Neoplasias Pancreáticas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Neoplasias do Colo/metabolismo , Citoplasma/metabolismo , Feminino , Células HCT116 , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
15.
J Clin Med ; 10(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203833

RESUMO

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most frequent malignancy in children and also occurs in adulthood. Despite high cure rates, BCP-ALL chemotherapy can be highly toxic. This type of toxicity can most likely be reduced by antibody-based immunotherapy targeting the CD19 antigen which is commonly expressed on BCP-ALL cells. In this study, we generated a novel Fc-engineered CD19-targeting IgG1 antibody fused to a single chain tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) domain (CD19-TRAIL). As TRAIL induces apoptosis in tumor cells but not in healthy cells, we hypothesized that CD19-TRAIL would show efficient killing of BCP-ALL cells. CD19-TRAIL showed selective binding capacity and pronounced apoptosis induction in CD19-positive (CD19+) BCP-ALL cell lines in vitro and in vivo. Additionally, CD19-TRAIL significantly prolonged survival of mice transplanted with BCP-ALL patient-derived xenograft (PDX) cells of different cytogenetic backgrounds. Moreover, simultaneous treatment with CD19-TRAIL and Venetoclax (VTX), an inhibitor of the anti-apoptotic protein BCL-2, promoted synergistic apoptosis induction in CD19+ BCP-ALL cells in vitro and prolonged survival of NSG-mice bearing the BCP-ALL cell line REH. Therefore, IgG1-based CD19-TRAIL fusion proteins represent a new potential immunotherapeutic agent against BCP-ALL.

16.
Cell Death Dis ; 12(8): 757, 2021 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-34333527

RESUMO

TNF-related apoptosis-inducing ligand (TRAIL) receptor 2 (TRAIL-R2) can induce apoptosis in cancer cells upon crosslinking by TRAIL. However, TRAIL-R2 is highly expressed by many cancers suggesting pro-tumor functions. Indeed, TRAIL/TRAIL-R2 also activate pro-inflammatory pathways enhancing tumor cell invasion, migration, and proliferation. In addition, nuclear TRAIL-R2 (nTRAIL-R2) promotes malignancy by inhibiting miRNA let-7-maturation. Here, we show that TRAIL-R2 interacts with the tumor suppressor protein p53 in the nucleus, assigning a novel pro-tumor function to TRAIL-R2. Knockdown of TRAIL-R2 in p53 wild-type cells increases the half-life of p53 and the expression of its target genes, whereas its re-expression decreases p53 protein levels. Interestingly, TRAIL-R2 also interacts with promyelocytic leukemia protein (PML), a major regulator of p53 stability. PML-nuclear bodies are also the main sites of TRAIL-R2/p53 co-localization. Notably, knockdown or destruction of PML abolishes the TRAIL-R2-mediated regulation of p53 levels. In summary, our finding that nTRAIL-R2 facilitates p53 degradation and thereby negatively regulates p53 target gene expression provides insight into an oncogenic role of TRAIL-R2 in tumorigenesis that particularly manifests in p53 wild-type tumors.


Assuntos
Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Proteína da Leucemia Promielocítica/metabolismo , Ligação Proteica , Estabilidade Proteica , Transporte Proteico , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/genética
17.
Int J Biol Markers ; 35(2): 20-28, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32394766

RESUMO

BACKGROUND: High mobility group A proteins are involved in chromatin remodeling, thereby influencing multiple fundamental biological processes. HMGA2 has been linked to oncogenic traits among a variety of malignancies. OBJECTIVE: To determine the prognostic implications of subcellular distribution patterns of HMGA2 in breast cancer. METHODS: Nuclear and cytoplasmic HMGA2 was evaluated in 342 breast cancer specimens and matched with clinico-pathological parameters. RESULTS: Overall and cytoplasmic, but not nuclear, levels of HMGA2 correlated with better survival prognoses in our collective (hazard ratio (HR) 0.34, P = 0.001 and HR 0.34, P < 0.001, respectively). The protective effect of cytoplasmic HMGA2 persisted in the Luminal A and triple negative breast cancer subgroups. Evaluating Luminal A and B subgroups jointly, only cytoplasmic, but not overall or nuclear HMGA2 levels were associated with better survival (HR 0.42, 95% confidence interval 0.21, 0.86, P = 0.017), irrespective of tumor size and node status. The addition of HMGA2 overall and cytoplasmic scores strengthened the prognostic selectivity in a model of conventional breast cancer risk factors. No predictive significance with regard to endocrine or chemoendocrine therapies was observed. CONCLUSION: Unexpectedly, we found a favorable survival probability upon overall levels of HMGA2 in our breast cancer collective, which was predominantly determined by the presence of HMGA2 in the cytoplasm.


Assuntos
Neoplasias da Mama/mortalidade , Proteína HMGA2/metabolismo , Feminino , Humanos , Prognóstico , Análise de Sobrevida
18.
PLoS One ; 14(4): e0214847, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30947287

RESUMO

Due to their ability to preferentially induce cell death in tumor cells, while sparing healthy cells, TNF-related apoptosis-inducing ligand (TRAIL) and agonistic anti-TRAIL-R1 or anti-TRAIL-R2-specific antibodies are under clinical investigations for cancer-treatment. However, TRAIL-Rs may also induce signaling pathways, which result in malignant progression. TRAIL receptors are transcriptionally upregulated via wild-type p53 following radio- or chemotherapy. Nevertheless, the impact of p53 status on the expression and signaling of TRAIL-Rs is not fully understood. Therefore, we analyzed side by side apoptotic and non-apoptotic signaling induced by TRAIL or the agonistic TRAIL-R-specific antibodies Mapatumumab (anti-TRAIL-R1) and Lexatumumab (anti-TRAIL-R2) in the two isogenic colon carcinoma cell lines HCT116 p53+/+ and p53-/-. We found that HCT116 p53+/+ cells were significantly more sensitive to TRAIL-R-triggering than p53-/- cells. Similarly, A549 lung cancer cells expressing wild-type p53 were more sensitive to TRAIL-R-mediated cell death than their derivatives with knockdown of p53. Our data demonstrate that the contribution of p53 in regulating TRAIL-R-induced apoptosis does not correlate to the levels of TRAIL-Rs at the plasma membrane, but rather to p53-mediated upregulation of Bax, favouring the mitochondrial amplification loop. Consistently, stronger caspase-9 and caspase-3 activation as well as PARP-cleavage was observed following TRAIL-R-triggering in HCT116 p53+/+ compared to HCT116 p53-/- cells. Interestingly, HCT116 p53+/+ cells showed also a more potent activation of non-canonical TRAIL-R-induced signal transduction pathways like JNK, p38 and ERK1/ERK2 than p53-/- cells. Likewise, these cells induced IL-8 expression in response to TRAIL, Mapatumumab or Lexatumumab significantly stronger than p53-/- cells. We obtained similar results in A549 cells with or without p53-knockdown and in the two isogenic colon cancer cell lines RKO p53+/+ and p53-/-. In both cellular systems, we could clearly demonstrate the potentiating effects of p53 on TRAIL-R-mediated IL-8 induction. In conclusion, we found that wild-type p53 increases TRAIL-R-mediated apoptosis but simultaneously augments non-apoptotic signaling.


Assuntos
Apoptose/fisiologia , Neoplasias/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Membrana Celular/metabolismo , Técnicas de Silenciamento de Genes , Genes p53 , Células HCT116 , Humanos , Interleucina-8/biossíntese , Neoplasias/patologia , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/deficiência , Proteína X Associada a bcl-2/metabolismo
19.
Histol Histopathol ; 34(5): 491-501, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30375637

RESUMO

The expression of five members of the TNF receptor superfamily and two of their ligands in human pancreatic ductal adenocarcinoma were investigated in parallel by immunohistochemistry. 41 patients with histologically confirmed ductal carcinoma of the pancreas were enrolled in this study in order (i) to compare the individual TNFR-SF expression and their ligands in PDAC-cells and (ii) to investigate their correlation with survival data. All patients had undergone pancreaticoduodenectomy and were staged as pT3N1M0. Immunostaining was done on FFPE tissue sections of the tumor tissue, using antibodies directed against TRAIL-Receptor-1, -2 and -4, TRAIL, CD95, TNF-Receptor-1 and TNF-α. The intensity and quantity of immunostaining were evaluated separately for tumor cell cytoplasm and tumor cell nucleus. Immunostaining results were correlated with each other and with patient survival. All proteins were found to be expressed in the majority of the tumor cells. The expression (i) of the following members of TNFR-SF and their ligands correlated with each other: TNF-Receptor-1 and TNFα (cytoplasmatic scores, p=0.001), TNF-Receptor 1 and TRAIL (nuclear antigen expression p=0.005 and the main score p=0.001, which contains the overall intracellular antigen expression), TNF-Receptor 1 and CD95 (main score, p=0.001), TRAIL-Receptor-1 and TRAIL-Receptor-2 (nuclear parameters, p=0.023), TRAIL-Receptor-4 and TRAIL (main score p=0.041). In addition (ii), high cytoplasmatic expression of TNF-Receptor-1 and a strong cytoplasmatic and nuclear expression of CD95 correlated significantly with a better prognosis of the PDAC patients.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Receptores do Fator de Necrose Tumoral/biossíntese , Receptor fas/biossíntese , Idoso , Idoso de 80 Anos ou mais , Carcinoma Ductal Pancreático/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/mortalidade , Prognóstico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/análise , Receptores do Fator de Necrose Tumoral/análise , Ligante Indutor de Apoptose Relacionado a TNF/análise , Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Fator de Necrose Tumoral alfa/biossíntese , Receptor fas/análise
20.
Front Immunol ; 10: 2044, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555275

RESUMO

Acquired immune evasion is one of the mechanisms that contributes to the dismal prognosis of cancer. Recently, we observed that different γδ T cell subsets as well as CD8+ αß T cells infiltrate the pancreatic tissue. Interestingly, the abundance of γδ T cells was reported to have a positive prognostic impact on survival of cancer patients. Since γδ T cells utilize TNF-related apoptosis inducing ligand (TRAIL) for killing of tumor cells in addition to granzyme B and perforin, we investigated the role of the TRAIL-/TRAIL-R system in γδ T cell-cytotoxicity toward pancreatic ductal adenocarcinoma (PDAC) and other cancer cells. Coculture of the different cancer cells with γδ T cells resulted in a moderate lysis of tumor cells. The lysis of PDAC Colo357 cells was independent of TRAIL as it was not inhibited by the addition of neutralizing anti-TRAIL antibodies or TRAIL-R2-Fc fusion protein. In accordance, knockdown (KD) of death receptors TRAIL-R1 or TRAIL-R2 in Colo357 cells had no effect on γδ T cell-mediated cytotoxicity. However, KD of decoy receptor TRAIL-R4, which robustly enhanced TRAIL-induced apoptosis, interestingly, almost completely abolished the γδ T cell-mediated lysis of these tumor cells. This effect was associated with a reduced secretion of granzyme B by γδ T cells and enhanced PGE2 production as a result of increased expression level of synthetase cyclooxygenase (COX)-2 by TRAIL-R4-KD cells. In contrast, knockin of TRAIL-R4 decreased COX-2 expression. Importantly, reduced release of granzyme B by γδ T cells cocultured with TRAIL-R4-KD cells was partially reverted by bispecific antibody [HER2xCD3] and led in consequence to enhanced lysis of tumor cells. Likewise, inhibition of COX-1 and/or COX-2 partially enhanced γδ T cell-mediated lysis of TRAIL-R4-KD cells. The combination of bispecific antibody and COX-inhibitor completely restored the lysis of TRAIL-R4-KD cells by γδ T cells. In conclusion, we uncovered an unexpected novel role of TRAIL-R4 in tumor cells. In contrast to its known pro-tumoral, anti-apoptotic function, TRAIL-R4 augments the anti-tumoral cytotoxic activity of γδ T cells.


Assuntos
Citotoxicidade Imunológica , Imunomodulação , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptores Chamariz do Fator de Necrose Tumoral/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Neoplasias/imunologia , Neoplasias/metabolismo , Receptores Chamariz do Fator de Necrose Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA