Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Blood ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949981

RESUMO

-Thalassemia (AT) is one of the most commonly occurring inherited hematological diseases. However, few treatments are available, and allogeneic bone marrow transplantation (BMT) is the only available therapeutic option for patients with severe AT. Research into AT has remained limited due to a lack of adult mouse models, with severe AT typically resulting in in utero lethality. By using a lipid nanoparticle (LNP) targeting the receptor CD117 and delivering a Cre mRNA (mRNACreLNPCD117), we were able to delete floxed -globin genes at high efficiency in hematopoietic stem cells (HSC) ex vivo. These cells were then engrafted in the absence or presence of a novel α-globin expressing lentiviral vector (ALS20I). Myeloablated mice transplanted with mRNACreLNPCD117-treated HSC showed a complete knockout of -globin genes. They demonstrated a phenotype characterized by the synthesis of hemoglobin H (-tetramers,  or HbH), aberrant erythropoiesis, and abnormal organ morphology, culminating in lethality approximately eight weeks following engraftment. Mice receiving mRNACreLNPCD117-treated HSC with at least one copy of ALS20I survived long-term with normalization of erythropoiesis, decreased the production of HbH, and ameliorated the abnormal organ morphology. Furthermore, we tested ALS20I in erythroid progenitors derived from -globin-KO CD34+ and cells isolated from patients with both deletional and non-deletional HbH disease, demonstrating improvement in -globin/-globin mRNA ratio and reduction in the formation of HbH by HPLC. Our results demonstrate the broad applicability of LNP for disease modeling, characterization of a novel severe mouse model of AT, and the efficacy of ALS20I for treating AT.

2.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559013

RESUMO

Metachromatic leukodystrophy (MLD) is a fatal lysosomal storage disease (LSD) characterized by the deficient enzymatic activity of arylsulfatase A (ARSA). Combined autologous hematopoietic stem cell transplant (HSCT) with lentiviral (LV) based gene therapy has great potential to treat MLD. However, if enzyme production is inadequate, this could result in continued loss of motor function, implying a high vector copy number (VCN) requirement for optimal enzymatic output. This may place children at increased risk for genomic toxicity due to higher VCN. We increased the expression of ARSA cDNA at single integration by generating novel LVs, optimizing ARSA expression, and enhancing safety. In addition, our vectors achieved optimal transduction in mouse and human HSC with minimal multiplicity of infection (MOI). Our top-performing vector (EA1) showed at least 4X more ARSA activity than the currently EU-approved vector and a superior ability to secrete vesicle-associated ARSA, a critical modality to transfer functional enzymes from microglia to oligodendrocytes. Three-month-old Arsa -KO MLD mice transplanted with Arsa -KO BM cells transduced with 0.6 VCN of EA1 demonstrated behavior and CNS histology matching WT mice. Our novel vector boosts efficacy while improving safety as a robust approach for treating early symptomatic MLD patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA