Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(22): 9723-9730, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38761139

RESUMO

The presence of organic micropollutants in water and sediments motivates investigation of their biotransformation at environmentally low concentrations, usually in the range of µg L-1. Many are biotransformed by cometabolic mechanisms; however, there is scarce information concerning their direct metabolization in this concentration range. Threshold concentrations for microbial assimilation have been reported in both pure and mixed cultures from different origins. The literature suggests a range value for bacterial growth of 1-100 µg L-1 for isolated aerobic heterotrophs in the presence of a single substrate. We aimed to investigate, as a model case, the threshold level for sulfamethoxazole (SMX) metabolization in pure cultures of Microbacterium strain BR1. Previous research with this strain has covered the milligram L-1 range. In this study, acclimated cultures were exposed to concentrations from 0.1 to 25 µg L-1 of 14C-labeled SMX, and the 14C-CO2 produced was trapped and quantified over 24 h. Interestingly, SMX removal was rapid, with 98% removed within 2 h. In contrast, mineralization was slower, with a consistent percentage of 60.0 ± 0.7% found at all concentrations. Mineralization rates increased with rising concentrations. Therefore, this study shows that bacteria are capable of the direct metabolization of organic micropollutants at extremely low concentrations (sub µg L-1).


Assuntos
Sulfametoxazol , Sulfametoxazol/metabolismo , Poluentes Químicos da Água/metabolismo
2.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38877639

RESUMO

AIM: Coaggregation, a highly specific cell-cell interaction mechanism, plays a pivotal role in multispecies biofilm formation. While it has been mostly studied in oral environments, its occurrence in aquatic systems is also acknowledged. Considering biofilm formation's economic and health-related implications in engineered water systems, it is crucial to understand its mechanisms. Here, we hypothesized that traceable differences at the proteome level might determine coaggregation ability. METHODS AND RESULTS: Two strains of Delftia acidovorans, isolated from drinking water were studied. First, in vitro motility assays indicated more swarming and twitching motility for the coaggregating strain (C+) than non-coaggregating strain (C-). By transmission electronic microscopy, we confirmed the presence of flagella for both strains. By proteomics, we detected a significantly higher expression of type IV pilus twitching motility proteins in C+, in line with the motility assays. Moreover, flagellum ring proteins were more abundant in C+, while those involved in the formation of the flagellar hook (FlE and FilG) were only detected in C-. All the results combined suggested structural and conformational differences between stains in their cell appendages. CONCLUSION: This study presents an alternative approach for identifying protein biomarkers to detect coaggregation abilities in uncharacterized strains.


Assuntos
Biofilmes , Água Potável , Flagelos , Proteômica , Biofilmes/crescimento & desenvolvimento , Água Potável/microbiologia , Flagelos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Aderência Bacteriana , Fímbrias Bacterianas/metabolismo , Microbiologia da Água , Proteoma
3.
Chemosphere ; 358: 142170, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679177

RESUMO

1,2-dichloropropane (1,2-DCP) and 1,2,3-trichloropropane (1,2,3-TCP) are hazardous chemicals frequently detected in groundwater near agricultural zones due to their historical use in chlorinated fumigant formulations. In this study, we show that the organohalide-respiring bacterium Dehalogenimonas alkenigignens strain BRE15 M can grow during the dihaloelimination of 1,2-DCP and 1,2,3-TCP to propene and allyl chloride, respectively. Our work also provides the first application of dual isotope approach to investigate the anaerobic reductive dechlorination of 1,2-DCP and 1,2,3-TCP. Stable carbon and chlorine isotope fractionation values for 1,2-DCP (ƐC = -13.6 ± 1.4 ‰ and ƐCl = -27.4 ± 5.2 ‰) and 1,2,3-TCP (ƐC = -3.8 ± 0.6 ‰ and ƐCl = -0.8 ± 0.5 ‰) were obtained resulting in distinct dual isotope slopes (Λ12DCP = 0.5 ± 0.1, Λ123TCP = 4 ± 2). However direct comparison of ΛC-Cl among different substrates is not possible and investigation of the C and Cl apparent kinetic isotope effects lead to the hypothesis that concerted dichloroelimination mechanism is more likely for both compounds. In fact, whole cell activity assays using cells suspensions of the Dehalogenimonas-containing culture grown with 1,2-DCP and methyl viologen as electron donor suggest that the same set of reductive dehalogenases was involved in the transformation of 1,2-DCP and 1,2,3-TCP. This study opens the door to the application of isotope techniques for evaluating biodegradation of 1,2-DCP and 1,2,3-TCP, which often co-occur in groundwaters near agricultural fields.


Assuntos
Biodegradação Ambiental , Propano , Propano/metabolismo , Propano/análogos & derivados , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Água Subterrânea/microbiologia , Água Subterrânea/química , Cloro/metabolismo , Cloro/química , Isótopos de Carbono , Halogenação , Chloroflexi/metabolismo , Fracionamento Químico , Ácido 2,4-Diclorofenoxiacético/análogos & derivados
4.
Sci Total Environ ; 912: 169349, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38104803

RESUMO

Anammox bacteria are widely applied worldwide for denitrification of urban wastewater. Differently, their application in the case of industrial effluents has been more limited. Those frequently present high loads of contaminants, demanding an individual evaluation of their treatability by anammox technologies. Bioreactors setting up and recovery after contaminants-derived perturbations are slow. Also, toxicity is frequently not acute but cumulative, which causes negative macroscopic effects to appear only after medium or long-term operations. All these particularities lead to relevant economic and time losses. We hypothesized that contaminants cause changes at anammox proteome level before perturbations in the engineered systems are detectable by macroscopic analyses. In this study, we explored the usefulness of short-batch tests combined with environmental proteomics for the early detection of those changes. Copper was used as a model of stressor contaminant, and anammox granules were exposed to increasing copper concentrations including previously reported IC50 values. The proteomic results revealed that specific anammox proteins involved in stress response (bacterioferritin, universal stress protein, or superoxide dismutase) were overexpressed in as short a time as 28 h at the higher copper concentrations. Consequently, EPS production was also increased, as indicated by the alginate export family protein, polysaccharide biosynthesis protein, and sulfotransferase increased expression. The described workflow can be applied to detect early-stage stress biomarkers of the negative effect of other metals, organics, or even changes in physical-chemical parameters such as pH or temperature on anammox-engineered systems. On an industrial level, it can be of great value for decision-making, especially before dealing with new effluents on facilities, deriving important economic and time savings.


Assuntos
Oxidação Anaeróbia da Amônia , Cobre , Proteômica , Oxirredução , Nitrogênio , Reatores Biológicos/microbiologia , Desnitrificação , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA