RESUMO
BACKGROUND: Longitudinal data on key cancer outcomes for clinical research, such as response to treatment and disease progression, are not captured in standard cancer registry reporting. Manual extraction of such outcomes from unstructured electronic health records is a slow, resource-intensive process. Natural language processing (NLP) methods can accelerate outcome annotation, but they require substantial labeled data. Transfer learning based on language modeling, particularly using the Transformer architecture, has achieved improvements in NLP performance. However, there has been no systematic evaluation of NLP model training strategies on the extraction of cancer outcomes from unstructured text. RESULTS: We evaluated the performance of nine NLP models at the two tasks of identifying cancer response and cancer progression within imaging reports at a single academic center among patients with non-small cell lung cancer. We trained the classification models under different conditions, including training sample size, classification architecture, and language model pre-training. The training involved a labeled dataset of 14,218 imaging reports for 1112 patients with lung cancer. A subset of models was based on a pre-trained language model, DFCI-ImagingBERT, created by further pre-training a BERT-based model using an unlabeled dataset of 662,579 reports from 27,483 patients with cancer from our center. A classifier based on our DFCI-ImagingBERT, trained on more than 200 patients, achieved the best results in most experiments; however, these results were marginally better than simpler "bag of words" or convolutional neural network models. CONCLUSION: When developing AI models to extract outcomes from imaging reports for clinical cancer research, if computational resources are plentiful but labeled training data are limited, large language models can be used for zero- or few-shot learning to achieve reasonable performance. When computational resources are more limited but labeled training data are readily available, even simple machine learning architectures can achieve good performance for such tasks.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Progressão da Doença , Fontes de Energia Elétrica , Registros Eletrônicos de SaúdeRESUMO
PURPOSE: Precision oncology clinical trials often struggle to accrue, partly because it is difficult to find potentially eligible patients at moments when they need new treatment. We piloted deployment of artificial intelligence tools to identify such patients at a large academic cancer center. PATIENTS AND METHODS: Neural networks that process radiology reports to identify patients likely to start new systemic therapy were applied prospectively for patients with solid tumors that had undergone next-generation sequencing at our center. Model output was linked to the MatchMiner tool, which matches patients to trials using tumor genomics. Reports listing genomically matched patients, sorted by probability of treatment change, were provided weekly to an oncology nurse navigator (ONN) coordinating recruitment to nine early-phase trials. The ONN contacted treating oncologists when patients likely to change treatment appeared potentially trial-eligible. RESULTS: Within weekly reports to the ONN, 60,199 patient-trial matches were generated for 2,150 patients on the basis of genomics alone. Of these, 3,168 patient-trial matches (5%) corresponding to 525 patients were flagged for ONN review by our model, representing a 95% reduction in review compared with manual review of all patient-trial matches weekly. After ONN review for potential eligibility, treating oncologists for 74 patients were contacted. Common reasons for not contacting treating oncologists included cases where patients had already decided to continue current treatment (21%); the trial had no slots (14%); or the patient was ineligible on ONN review (12%). Of 74 patients whose oncologists were contacted, 10 (14%) had a consult regarding a trial and five (7%) enrolled. CONCLUSION: This approach facilitated identification of potential patients for clinical trials in real time, but further work to improve accrual must address the many other barriers to trial enrollment in precision oncology research.
Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Inteligência Artificial , Medicina de Precisão , Oncologia , Projetos PilotoRESUMO
PURPOSE: With the growing number of available targeted therapeutics and molecular biomarkers, the optimal care of patients with cancer now depends on a comprehensive understanding of the rapidly evolving landscape of precision oncology, which can be challenging for oncologists to navigate alone. METHODS: We developed and implemented a precision oncology decision support system, GI TARGET, (Gastrointestinal Treatment Assistance Regarding Genomic Evaluation of Tumors) within the Gastrointestinal Cancer Center at the Dana-Farber Cancer Institute. With a multidisciplinary team, we systematically reviewed tumor molecular profiling for GI tumors and provided molecularly informed clinical recommendations, which included identifying appropriate clinical trials aided by the computational matching platform MatchMiner, suggesting targeted therapy options on or off the US Food and Drug Administration-approved label, and consideration of additional or orthogonal molecular testing. RESULTS: We reviewed genomic data and provided clinical recommendations for 506 patients with GI cancer who underwent tumor molecular profiling between January and June 2019 and determined follow-up using the electronic health record. Summary reports were provided to 19 medical oncologists for patients with colorectal (n = 198, 39%), pancreatic (n = 124, 24%), esophagogastric (n = 67, 13%), biliary (n = 40, 8%), and other GI cancers. We recommended ≥ 1 precision medicine clinical trial for 80% (406 of 506) of patients, leading to 24 enrollments. We recommended on-label and off-label targeted therapies for 6% (28 of 506) and 25% (125 of 506) of patients, respectively. Recommendations for additional or orthogonal testing were made for 42% (211 of 506) of patients. CONCLUSION: The integration of precision medicine in routine cancer care through a dedicated multidisciplinary molecular tumor board is scalable and sustainable, and implementation of precision oncology recommendations has clinical utility for patients with cancer.
Assuntos
Neoplasias Gastrointestinais , Medicina de Precisão , Humanos , Oncologia , Neoplasias Gastrointestinais/diagnóstico , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/terapia , Genômica , Técnicas de Diagnóstico MolecularRESUMO
Widespread, comprehensive sequencing of patient tumors has facilitated the usage of precision medicine (PM) drugs to target specific genomic alterations. Therapeutic clinical trials are necessary to test new PM drugs to advance precision medicine, however, the abundance of patient sequencing data coupled with complex clinical trial eligibility has made it challenging to match patients to PM trials. To facilitate enrollment onto PM trials, we developed MatchMiner, an open-source platform to computationally match genomically profiled cancer patients to PM trials. Here, we describe MatchMiner's capabilities, outline its deployment at Dana-Farber Cancer Institute (DFCI), and characterize its impact on PM trial enrollment. MatchMiner's primary goals are to facilitate PM trial options for all patients and accelerate trial enrollment onto PM trials. MatchMiner can help clinicians find trial options for an individual patient or provide trial teams with candidate patients matching their trial's eligibility criteria. From March 2016 through March 2021, we curated 354 PM trials containing a broad range of genomic and clinical eligibility criteria and MatchMiner facilitated 166 trial consents (MatchMiner consents, MMC) for 159 patients. To quantify MatchMiner's impact on trial consent, we measured time from genomic sequencing report date to trial consent date for the 166 MMC compared to trial consents not facilitated by MatchMiner (non-MMC). We found MMC consented to trials 55 days (22%) earlier than non-MMC. MatchMiner has enabled our clinicians to match patients to PM trials and accelerated the trial enrollment process.