Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(8): 3260-3265, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35417179

RESUMO

Carbyne, a linear chain of carbon atoms, is the truly one-dimensional allotrope of carbon and the strongest known Raman scatterer. Here, we use tip-enhanced Raman scattering (TERS) to further enhance the Raman response of a single carbyne chain confined inside a double-walled carbon nanotube. We observe an increase of the anti-Stokes scattering by a factor of 3290 and a 22-fold enhancement of the anti-Stokes/Stokes ratio relative to far-field measurements. The power dependence of the anti-Stokes/Stokes ratio under TERS conditions is indicative of coherent Stokes-anti-Stokes scattering mediated by an excited phonon. The role of resonance effects and laser-induced heating are discussed and potential opportunities are outlined.


Assuntos
Lasers , Análise Espectral Raman , Carbamatos , Luz , Análise Espectral Raman/métodos , Vibração
2.
J Chem Phys ; 156(4): 044203, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35105101

RESUMO

Long linear chains of carbon encapsulated in carbon nanotubes represent the finite realization of carbyne, the truly one-dimensional carbon allotrope. Driven by advances in the synthesis of such structures, carbyne has attracted significant interest in recent years, with numerous experimental studies exploring its remarkable properties. As for other carbon nanomaterials, Raman spectroscopy has played an important role in the characterization of carbyne. In particular, tip-enhanced Raman scattering (TERS) has enabled imaging and spectroscopy down to the single-chain level. In this article, we provide a general introduction to carbyne and discuss the principles and experimental implementation of TERS as a key technology for the investigation of this material system. Within this context, the development of optical nanoantennas as TERS probes is addressed. We then summarize the latest progress in the Raman spectroscopic characterization of confined carbyne, with a focus on the findings assisted by TERS. Finally, we discuss open questions in the field and outline how TERS can contribute to solving them in future studies.

3.
Nano Lett ; 20(9): 6750-6755, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786933

RESUMO

We experimentally quantify the Raman scattering from individual carbyne chains confined in double-walled carbon nanotubes. We find that the resonant differential Raman cross section of confined carbyne is on the order of 10-22 cm2 sr-1 per atom, making it the strongest Raman scatterer ever reported.

4.
Opt Lett ; 45(4): 918, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32058505

RESUMO

Some minor issues were discovered after publication of Opt Lett. 43, 5801 (2018) and are corrected here. They do not change the main message of the paper.

5.
Opt Lett ; 43(23): 5801-5804, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30499945

RESUMO

Focal molography is a label-free optical biosensing method that relies on a coherent pattern of binding sites for biomolecular interaction analysis. Reactive immersion lithography (RIL) is central to the patterning of molographic chips but has potential for improvements. Here, we show that applying the idea of image reversal to RIL enables the fabrication of coherent binding patterns of increased quality (i.e., higher analyte efficiency). Thereby the detection limit of focal molography in biological assays can be improved.

6.
J Phys Chem Lett ; 13(41): 9752-9758, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36223098

RESUMO

Growing graphene nanoribbons from small organic molecules encapsulated in carbon nanotubes can result in products with uniform width and chirality. We propose a method based on encapsulation of 1,2,4-trichlorobenzene from the liquid phase and subsequent annealing. This procedure results in graphene nanoribbons several tens of nanometers long. The presence of nanoribbons was proven by Raman spectra both on macroscopic samples and on the nanoscale by tip-enhanced Raman scattering and high-resolution transmission electron microscopic images.

7.
ACS Nano ; 15(7): 12249-12255, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34254777

RESUMO

We investigate the anti-Stokes Raman scattering of single carbyne chains confined inside double-walled carbon nanotubes. Individual chains are identified using tip-enhanced Raman scattering (TERS) and heated by resonant excitation with varying laser powers. We study the temperature dependence of carbyne's Raman spectrum and quantify the laser-induced heating based on the anti-Stokes/Stokes ratio. Due to its molecular size and its large Raman cross section, carbyne holds great promise for local temperature monitoring, with potential applications ranging from nanoelectronics to biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA