Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 728: 109371, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35921901

RESUMO

In this study, we investigated whether modification of the carboxyl group with semicarbazide-enabled myoglobin (Mb) exhibits membrane-perturbing activity in physiological solutions. Mass spectrometry analysis showed that semicarbazide molecules were coupled to 19 of the 22 carboxyl groups in semicarbazide-modified Mb (SEM-Mb). Measurements of the absorption and circular dichroism spectra indicated that SEM-Mb lost its heme group and reduced the content of the α-helix structure in Mb. The microenvironment surrounding Trp residues in Mb changes after blocking negatively charged residues, as shown by fluorescence quenching studies. The results of the trifluoroethanol-induced structural transition indicated that SEM-Mb had higher structural flexibility than that of Mb. SEM-Mb, but not Mb, induced the permeability of bilayer membranes. Both proteins showed similar lipid-binding affinities. The conformation of SEM-Mb and Mb changed upon binding to lipid vesicles or a membrane-mimicking environment composed of SDS micelles, suggesting that membrane interaction modes differ. Unlike lipid-bound Mb, Trp residues in lipid-bound SEM-Mb are located at the protein-lipid interface. Altogether, our data indicate that modifying negatively charged groups relieves the structural constraints in Mb, consequently switching Mb structure to an active conformation that exhibits membrane-permeabilizing activity.


Assuntos
Mioglobina , Semicarbazidas , Dicroísmo Circular , Lipídeos , Conformação Proteica , Conformação Proteica em alfa-Hélice
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA