Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Antimicrob Agents Chemother ; : e0014324, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899927

RESUMO

In response to the spread of artemisinin (ART) resistance, ART-based hybrid drugs were developed, and their activity profile was characterized against drug-sensitive and drug-resistant Plasmodium falciparum parasites. Two hybrids were found to display parasite growth reduction, stage-specificity, speed of activity, additivity of activity in drug combinations, and stability in hepatic microsomes of similar levels to those displayed by dihydroartemisinin (DHA). Conversely, the rate of chemical homolysis of the peroxide bonds is slower in hybrids than in DHA. From a mechanistic perspective, heme plays a central role in the chemical homolysis of peroxide, inhibiting heme detoxification and disrupting parasite heme redox homeostasis. The hybrid exhibiting slow homolysis of peroxide bonds was more potent in reducing the viability of ART-resistant parasites in a ring-stage survival assay than the hybrid exhibiting fast homolysis. However, both hybrids showed limited activity against ART-induced quiescent parasites in the quiescent-stage survival assay. Our findings are consistent with previous results showing that slow homolysis of peroxide-containing drugs may retain activity against proliferating ART-resistant parasites. However, our data suggest that this property does not overcome the limited activity of peroxides in killing non-proliferating parasites in a quiescent state.

2.
Chemphyschem ; : e202400273, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819992

RESUMO

Photocatalysis using transition-metal complexes is widely considered the future of effective and affordable clean-air technology. In particular, redox-stable, easily accessible ligands are decisive. Here, we report a straightforward and facile synthesis of a new highly stable 2,6-bis(triazolyl)pyridine ligand, containing a nitrile moiety as a masked anchoring group, using copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction. The reported structure mimics the binding motif of uneasy to synthesize ligands. Pulse radiolysis under oxidizing and reducing conditions provided evidence for the high stability of the formed radical cation and radical anion 2,6-di(1,2,3-triazol-1-yl)-pyridine compound, thus indicating the feasibility of utilizing this as a ligand for redox active metal complexes and the sensitization of metal-oxide semiconductors (e.g., TiO2 nanoparticles or nanotubes).

3.
Bioorg Med Chem ; 103: 117650, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492540

RESUMO

Reactions for drug synthesis under cell-like conditions or even inside living cells can potentially be used e.g., to minimize toxic side effects, to maximize bioactive compound efficacy and/or to address drug delivery problems. Those reactions should be bioorthogonal to enable the generation of drug-like compounds with sufficiently good yields. In the known bioorthogonal Michael reactions, using thiols and phosphines as nucleophiles (e.g., in CS and CP bond formation reactions) is very common. No bioorthogonal Michael addition with a carbon nucleophile is known yet. Therefore, the development of such a reaction might be interesting for future drug discovery research. In this work, the metal-free Michael addition between cyclohexanone and various trans-ß-nitrostyrenes (CC bond formation reaction), catalysed by a dipeptide salt H-Pro-Phe-O-Na+, was investigated for the first time in the presence of glutathione (GSH) and in phosphate-buffered saline (PBS). We demonstrated that with electron-withdrawing substituents on the aromatic ring and in ß-position of the trans-ß-nitrostyrene yields up to 64% can be obtained under physiological conditions, indicating a potential bioorthogonality of the studied Michael reaction. In addition, the selected Michael products demonstrated activity against human ovarian cancer cells A2780. This study opens up a new vista for forming bioactive compounds via CC bond formation Michael reactions under physiological (cell-like) conditions.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Linhagem Celular Tumoral , Carbono/química , Compostos de Sulfidrila
4.
Chemistry ; 29(48): e202301194, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37267160

RESUMO

Drug modification by a fluorescent label is a common tool for studying its mechanism of action with fluorescence microscopy techniques. However, the attachment of a fluorescent label can significantly alter the polarity, solubility, and biological activity of the investigated drug, and, as a result, the studied mechanism of action can be misrepresented. Therefore, developing efficient drugs, which are inherently fluorescent and can be tracked directly in the cell is highly favorable. Here an easy formation of fluorescent hybrid drugs is presented, generated by a combination of two readily available non-fluorescent pharmacophores via a non-cleavable linker using a Ramachary-Bressy-Wang organocatalyzed azide-carbonyl [3+2] cycloaddition (organo-click) reaction. All newly prepared fluorescent compounds showed strong anti-HCMV activity (EC50 down to 0.07±0.00 µM), thus presenting a very promising drug developmental basis compared to the approved drug ganciclovir (EC50 2.60±0.50 µM). Remarkably, in vitro fluorescent imaging investigation of new compounds revealed induced changes in mitochondrial structures, which is a phenotypical hallmark of antiviral activity. This approach opens up new vistas for the easy formation of potent fluorescent drugs from readily available non-fluorescent parent compounds and might facilitate insight into their mode of action in living cells, avoiding the requirement of linkage to external fluorescent markers.


Assuntos
Antivirais , Artemisininas , Antivirais/farmacologia , Artemisininas/farmacologia , Microscopia de Fluorescência , Corantes , Benzimidazóis , Reação de Cicloadição , Química Click
5.
Chemistry ; 28(62): e202201414, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-35770829

RESUMO

The "metathesis reaction" is a straightforward and often metal-catalyzed chemical reaction that transforms two hydrocarbon molecules to two new hydrocarbons by exchange of molecular fragments. Alkane, alkene and alkyne metathesis have become an important tool in synthetic chemistry and have provided access to complex organic structures. Since the discovery of industrial olefin metathesis in the 1960s, many modifications have been reported; thus, increasing scope and improving reaction selectivity. Olefin metathesis catalysts based on high-valent group six elements or Ru(IV) have been developed and improved through ligand modifications. In addition, significant effort was invested to realize olefin metathesis with a non-toxic, bio-compatible and one of the most abundant elements in the earth's crust; namely, iron. First evidences suggest that low-valent Fe(II) complexes are active in olefin metathesis. Although the latter has not been unambiguously established, this review summarizes the key advances in the field and aims to guide through the challenges.


Assuntos
Alcenos , Ferro , Alcenos/química , Catálise , Hidrocarbonetos , Ligantes
6.
Chemistry ; 28(4): e202200039, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35043485

RESUMO

Invited for the cover of this issue are Manfred Marschall, Svetlana B. Tsogoeva and co-workers at Friedrich-Alexander University of Erlangen-Nürnberg. The image depicts a new anti-SARS-CoV-2 compound in front of SARS-CoV-2 viruses. Read the full text of the article at 10.1002/chem.202103861.


Assuntos
COVID-19 , Quinolinas , Técnicas de Cultura de Células , Humanos , SARS-CoV-2
7.
Chemistry ; 28(4): e202103861, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34859926

RESUMO

The presently ongoing pandemic of human SARS-CoV-2 infections (COVID-19) presents an enormous challenge in surveillance, vaccine and antiviral drug development. Here we report the synthesis of new bioactive quinoline-morpholine hybrid compounds and their virological evaluation, which proves pronounced cell culture-based inhibitory profile against SARS-CoV-2. Thus, selected quinoline compounds may suggest specific hit-to-lead development.


Assuntos
COVID-19 , Quinolinas , Antivirais/farmacologia , Técnicas de Cultura de Células , Humanos , Pandemias , Quinolinas/farmacologia , SARS-CoV-2
8.
Med Res Rev ; 41(6): 2927-2970, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34114227

RESUMO

Considerable progress has been made with the rather recently developed dimer approach, which has already found applications in the development of new effective artemisinin-derived antimalarial, anticancer, and antiviral agents. One observation common to these potential applications is the significant (i.e., much more than double) improvement in activity of artemisinin based dimers, which are not toxic to normal cells and have fewer or less harmful side effects, with respect to monomers against parasites, cancer cells and viruses. Due to the high potential of the dimerization concept, many new artemisinin-derived dimer compounds and their biological activities have been recently reported. In this review an overview of the synthesis of dimer drug candidates based on the clinically used drug artemisinin and its semisynthetic derivatives is given. Besides the highlighting of biological activities of the selected dimers, the main focus is set on different synthetic approaches toward the dimers containing a broad variety of symmetric and nonsymmetric linking moieties.


Assuntos
Antimaláricos , Antineoplásicos , Artemisininas , Antimaláricos/química , Antineoplásicos/química , Antivirais/química , Artemisininas/química , Dimerização , Humanos
9.
Chemistry ; 27(59): 14660-14671, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34375466

RESUMO

In 1966, Zimmerman proposed a type of Möbius aromaticity that involves through-space electron delocalization; it has since been widely applied to explain reactivity in pericyclic reactions, but is considered to be limited to transition-state structures. Although the easily accessible hexahelicene radical anion has been known for more than half a century, it was overlooked that it exhibits a ground-state minimum and robust Zimmerman-Möbius aromaticity in its central noose-like opening, becoming, hence, the oldest existing Möbius aromatic system and with smallest Möbius cycle known. Despite its overall aromatic stabilization energy of 13.6 kcal mol-1 (at B3LYP/6-311+G**), the radical also features a strong, globally induced paramagnetic ring current along its outer edge. Exclusive global paramagnetic currents can also be found in other fully delocalized radical anions of 4N+2 π-electron aromatic polycyclic benzenoid hydrocarbons (PAH), thus questioning the established magnetic criterion of antiaromaticity. As an example of a PAH with nontrivial topology, we studied a novel Möbius[16]cyclacene that has a non-orientable surface manifold and a stable closed-shell singlet ground state at several density functional theory levels. Its metallic monoanion radical (0.0095 eV band gap at HSE06/6-31G* level) is also wave-function stable and displays an unusual 4π-periodic, magnetically induced ring current (reminiscent of the transformation behaviour of spinors under spatial rotation), thus indicating the existence of a new, Hückel-rule-evading type of aromaticity.

10.
J Org Chem ; 86(9): 6111-6125, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33843224

RESUMO

Substituted 2,6-dicyanoanilines are versatile electron donor-acceptor compounds, which have recently received considerable attention, since they exhibit strong fluorescence and may have utility in the synthesis of fluorescent materials, non-natural photosynthetic systems, and materials with nonlinear optical properties. The majority of known synthetic procedures are, however, "stop-and-go" reaction processes involving time-consuming and waste-producing isolation and purification of product intermediates. Here, we present the synthesis of substituted 2,6-dicyanoanilines via atom-economical and eco-friendly one-pot processes, involving metal-free domino reactions, and their subsequent photochemical and photophysical measurements and theoretical calculations. These studies exhibit the existence of an easily tunable radical ion pair-based charge-transfer (CT) emission in the synthesized 2,6-dicyanoaniline-based electron donor-acceptor systems. The charge-transfer processes were explored by photochemical and radiation chemical measurements, in particular, based on femtosecond laser photolysis transient absorption spectroscopy and time-resolved emission spectroscopy, accompanied by pulse radiolysis and complemented by quantum chemical investigations employing time-dependent density-functional theory. This chromophore class exhibits a broad-wavelength-range fine-tunable charge recombination emission with high photoluminescence quantum yields up to 0.98. Together with its rather simple and cost-effective synthesis (using easily available starting materials) and customizable properties, it renders this class of compounds feasible candidates as potential dyes for future optoelectronic devices like organic light-emitting diodes (OLEDs).

11.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430060

RESUMO

Human cytomegalovirus (HCMV) is a human pathogenic herpesvirus associated with a variety of clinical symptoms. Current antiviral therapy is not always effective, so that improved drug classes and drug-targeting strategies are needed. Particularly host-directed antivirals, including pharmaceutical kinase inhibitors (PKIs), may help to overcome problems of drug resistance. Here, we focused on utilizing a selection of clinically relevant PKIs and determined their anticytomegaloviral efficacies. Particularly, PKIs directed to host or viral cyclin-dependent kinases, i.e., abemaciclib, LDC4297 and maribavir, exerted promising profiles against human and murine cytomegaloviruses. The anti-HCMV in vitro activity of the approved anti-cancer drug abemaciclib was confirmed in vivo using our luciferase-based murine cytomegalovirus (MCMV) animal model in immunocompetent mice. To assess drug combinations, we applied the Bliss independence checkerboard and Loewe additivity fixed-dose assays in parallel. Results revealed that (i) both affirmative approaches provided valuable information on anti-CMV drug efficacies and interactions, (ii) the analyzed combinations comprised additive, synergistic or antagonistic drug interactions consistent with the drugs' antiviral mode-of-action, (iii) the selected PKIs, especially LDC4297, showed promising inhibitory profiles, not only against HCMV but also other α-, ß- and γ-herpesviruses, and specifically, (iv) the combination treatment with LDC4297 and maribavir revealed a strong synergism against HCMV, which might open doors towards novel clinical options in the near future. Taken together, this study highlights the potential of therapeutic drug combinations of current developmental/preclinical PKIs.


Assuntos
Infecções por Citomegalovirus/tratamento farmacológico , Farmacorresistência Viral/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Replicação Viral/genética , Aminopiridinas/farmacologia , Animais , Antivirais/farmacologia , Benzimidazóis/farmacologia , Linhagem Celular , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/patogenicidade , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Combinação de Medicamentos , Ganciclovir/farmacologia , Humanos , Camundongos , Pirazóis/farmacologia , Ribonucleosídeos/farmacologia , Triazinas/farmacologia , Replicação Viral/efeitos dos fármacos
12.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34884662

RESUMO

Human cytomegalovirus (HCMV) is a major pathogenic herpesvirus that is prevalent worldwide and it is associated with a variety of clinical symptoms. Current antiviral therapy options do not fully satisfy the medical needs; thus, improved drug classes and drug-targeting strategies are required. In particular, host-directed antivirals, including pharmaceutical kinase inhibitors, might help improve the drug qualities. Here, we focused on utilizing PROteolysis TArgeting Chimeras (PROTACs), i.e., hetero-bifunctional molecules containing two elements, namely a target-binding molecule and a proteolysis-inducing element. Specifically, a PROTAC that was based on a cyclin-dependent kinase (CDK) inhibitor, i.e., CDK9-directed PROTAC THAL-SNS032, was analyzed and proved to possess strong anti-HCMV AD169-GFP activity, with values of EC50 of 0.030 µM and CC50 of 0.175 µM (SI of 5.8). Comparing the effect of THAL-SNS032 with its non-PROTAC counterpart SNS032, data indicated a 3.7-fold stronger anti-HCMV efficacy. This antiviral activity, as illustrated for further clinically relevant strains of human and murine CMVs, coincided with the mid-nanomolar concentration range necessary for a drug-induced degradation of the primary (CDK9) and secondary targets (CDK1, CDK2, CDK7). In addition, further antiviral activities were demonstrated, such as the inhibition of SARS-CoV-2 replication, whereas other investigated human viruses (i.e., varicella zoster virus, adenovirus type 2, and Zika virus) were found insensitive. Combined, the antiviral quality of this approach is seen in its (i) mechanistic uniqueness; (ii) future options of combinatorial drug treatment; (iii) potential broad-spectrum activity; and (iv) applicability in clinically relevant antiviral models. These novel data are discussed in light of the current achievements of anti-HCMV drug development.


Assuntos
Antivirais , Citomegalovirus , Inibidores de Proteínas Quinases , Animais , Humanos , Camundongos , Antivirais/farmacologia , Linhagem Celular , Quinase 9 Dependente de Ciclina , Citomegalovirus/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Inibidores de Proteínas Quinases/farmacologia , Replicação Viral/efeitos dos fármacos , Proteólise
13.
Angew Chem Int Ed Engl ; 60(41): 22307-22314, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34060211

RESUMO

Hexaarylbenzene (HAB) derivatives are versatile aromatic systems playing a significant role as chromophores, liquid crystalline materials, molecular receptors, molecular-scale devices, organic light-emitting diodes and candidates for organic electronics. Statistical synthesis of simple symmetrical HABs is known via cyclotrimerization or Diels-Alder reactions. By contrast, the synthesis of more complex, asymmetrical systems, and without involvement of statistical steps, remains an unsolved problem. Here we present a generally applicable synthetic strategy to access asymmetrical HAB via an atom-economical and high-yielding metal-free four-step domino reaction using nitrostyrenes and α,α-dicyanoolefins as easily available starting materials. Resulting domino product-functionalized triarylbenzene (TAB)-can be used as a key starting compound to furnish asymmetrically substituted hexaarylbenzenes in high overall yield and without involvement of statistical steps. This straightforward domino process represents a distinct approach to create diverse and still unexplored HAB scaffolds, containing six different aromatic rings around central benzene core.

14.
Chemistry ; 26(52): 12019-12026, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32485071

RESUMO

Viral infections cause life-threatening diseases in millions of people worldwide every year and there is an urgent need for new, effective antiviral drugs. Hybridization of two chemically diverse compounds into a new bioactive effector product is a successful concept to improve the properties of a hybrid drug relative to the parent compounds. In this study, (iso)quinoline-artemisinin hybrids, obtained through copper-catalyzed azide-alkyne cycloaddition or metal-free click reactions (in organic solvents or in the presence of water), were analyzed in vitro, for the first time, for their inhibitory activity against human cytomegalovirus (HCMV), relative to their parent compounds and the reference drug ganciclovir. EC50 (HCMV) values were obtained in a range 0.22-1.20 µm, which indicated highly potent antiviral properties in the absence of cytotoxic effects on normal cells (CC50 >100 µm). The most active hybrid, 1 (EC50 =0.22 µm), is 25 times more potent than its parent compound artesunic acid (EC50 =5.41 µm) and 12 times more efficient than the standard drug ganciclovir (EC50 =2.6 µm). Interestingly, hybrid 1 also shows inhibitory activity against hepatitis B virus in vitro (EC50 (HBeAg)=2.57 µm).


Assuntos
Vírus , Antivirais/farmacologia , Artemisininas/farmacologia , Química Click , Citomegalovirus , Humanos , Quinolinas/farmacologia
15.
Chemistry ; 26(4): 839-844, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31663650

RESUMO

Viedma ripening is a deracemization process that has been used to deracemize a range of chiral molecules. The method has two major requirements: the compound needs to crystallize as a conglomerate and it needs to be racemizable under the crystallization conditions. Although conglomerate formation can be induced in different ways, the number of racemization methods is still rather limited. To extend the scope of Viedma ripening, in the present research we applied UV-light-induced racemization in a Viedma ripening process, and report the successful deracemization of a BINOL derivative crystallizing as a conglomerate. Irradiation by UV light activates the target compound in combination with an organic base, required to promote the excited-state proton transfer (ESPT), leading thereafter to racemization. This offers a new tool towards the development of Viedma ripening processes, by using a cheap and "green" catalytic source like UV light to racemize suitable chiral compounds.

16.
Chemphyschem ; 21(16): 1775-1787, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32519414

RESUMO

Viedma deracemization is based on solution phase racemization, dissolution of racemic or scalemic conglomerates and crystal growth through autocatalytic cluster formation. With rate limiting racemization, its acceleration by appropriate catalysts may result in speeding up deracemization. A conglomerate-forming chiral compound may principally racemize directly, or via reverse of its formation reaction. For a hydrazine derivative, we investigated available racemization pathways in presence of pyrrolidine or thiourea amine as base catalysts: via Mannich or aza-Michael reaction steps and their reverse, or by enolization. Racemization by enolization was computationally found to dominate, both under water-free conditions and in presence of water, involving a multitude of different pathways. Faster racemization in presence of water resulted indeed in more rapid deracemization, when the base was pyrrolidine. Under water-free conditions, the role of water as enolization catalyst is assumed by chiral hydrazine itself - in autocatalytic racemization and in which both reactant and product are catalysts.

17.
Bioorg Med Chem Lett ; 30(23): 127514, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32860980

RESUMO

Structural hybridization of preclinically and clinically validated pharmacologically active molecules has emerged as a promising tool to develop new generations of safe and highly efficient drug candidates against various diseases including microbial infections, virus infections and cancer. Strategies of drug-drug combinations have been adopted to generate hybrid conjugates of many clinically used drugs, designed to address inherent problems associated with these drugs. Thus, the design of hybrids was aimed to achieve higher efficacy through possible multi-target interactions, selective delivery of the drug to the site of action with the aim to improve bioavailability, alleviate toxicity and circumvent drug resistances. In this review article, we summarize the progress made in recent years in the rapidly growing field of drug discovery, focusing on the rationality of the hybrid design with particular emphasis on the linker architecture, which plays a crucial role in the overall success of a hybrid drug.


Assuntos
Anti-Infecciosos/química , Antineoplásicos/química , Desenho de Fármacos , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Testes de Sensibilidade Microbiana , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Vírus/efeitos dos fármacos
18.
Int J Mol Sci ; 21(15)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759737

RESUMO

Human cytomegalovirus (HCMV) is a major human pathogen associated with severe pathology. Current options of antiviral therapy only partly satisfy the needs of a well-tolerated long-term treatment/prophylaxis free from drug-induced viral resistance. Recently, we reported the strong antiviral properties in vitro and in vivo of the broad-spectrum anti-infective drug artesunate and its optimized derivatives. NF-κB signaling was described as a targeting mechanism and additional target proteins have recently been identified. Here, we analyzed the autofluorescent hybrid compound BG95, which could be utilized for intracellular visualization by confocal imaging and a tracking analysis in virus-infected primary human fibroblasts. As an important finding, BG95 accumulated in mitochondria visualized by anti-prohibitin and MitoTracker staining, and induced statistically significant changes of mitochondrial morphology, distinct from those induced by HCMV infection. Notably, mitochondrial membrane potential was found substantially reduced by BG95, an effect apparently counteracting efficient HCMV replication, which requires active mitochondria and upregulated energy levels. This finding was consistent with binding properties of artesunate-like compounds to mitochondrial proteins and thereby suggested a new mechanistic aspect. Combined, the present study underlines an important role of mitochondria in the multifaceted, host-directed antiviral mechanism of this drug class, postulating a new mitochondria-specific mode of protein targeting.


Assuntos
Antivirais/farmacologia , Artemisininas/farmacologia , Infecções por Citomegalovirus/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Antivirais/química , Artemisininas/química , Artesunato/análogos & derivados , Artesunato/farmacologia , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/patogenicidade , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Farmacorresistência Viral/efeitos dos fármacos , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Humanos , Mitocôndrias/genética , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética , Replicação Viral/efeitos dos fármacos
20.
Chemistry ; 25(31): 7457-7462, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-30969449

RESUMO

In sigma complexes, intermediates in nucleophilic and electrophilic aromatic substitution and other reactions, delocalization in the aromatic ring is formally disrupted. Unexpectedly, computational evidence is presented that favorable processes contain aromatic sigma complexes. Tetracoordinated carbon therein surprisingly employs orbitals that are more similar to sp2 than to sp3 hybrids in sigma bonds with adjacent ring atoms. Both leaving groups and nucleo- or electrophiles may donate electrons to the π-system depending on the availability of p-type orbitals to fulfill Hückel (4N+2) or Möbius (4N) rules of aromaticity in analogy to conjugated transition-metal metallacycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA