Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Annu Rev Immunol ; 33: 169-200, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25493333

RESUMO

The Major Histocompatibility Complex (MHC) locus encodes classical MHC class I and MHC class II molecules and nonclassical MHC-I molecules. The architecture of these molecules is ideally suited to capture and present an array of peptide antigens (Ags). In addition, the CD1 family members and MR1 are MHC class I-like molecules that bind lipid-based Ags and vitamin B precursors, respectively. These Ag-bound molecules are subsequently recognized by T cell antigen receptors (TCRs) expressed on the surface of T lymphocytes. Structural and associated functional studies have been highly informative in providing insight into these interactions, which are crucial to immunity, and how they can lead to aberrant T cell reactivity. Investigators have determined over thirty unique TCR-peptide-MHC-I complex structures and twenty unique TCR-peptide-MHC-II complex structures. These investigations have shown a broad consensus in docking geometry and provided insight into MHC restriction. Structural studies on TCR-mediated recognition of lipid and metabolite Ags have been mostly confined to TCRs from innate-like natural killer T cells and mucosal-associated invariant T cells, respectively. These studies revealed clear differences between TCR-lipid-CD1, TCR-metabolite-MR1, and TCR-peptide-MHC recognition. Accordingly, TCRs show remarkable structural and biological versatility in engaging different classes of Ag that are presented by polymorphic and monomorphic Ag-presenting molecules of the immune system.


Assuntos
Apresentação de Antígeno , Antígenos/imunologia , Antígenos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Antígenos/química , Reações Cruzadas/imunologia , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Lipídeos/imunologia , Ligação Proteica/imunologia , Receptores de Antígenos de Linfócitos T/química
2.
Nat Immunol ; 23(1): 86-98, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34845392

RESUMO

Ineffective antibody-mediated responses are a key characteristic of chronic viral infection. However, our understanding of the intrinsic mechanisms that drive this dysregulation are unclear. Here, we identify that targeting the epigenetic modifier BMI-1 in mice improves humoral responses to chronic lymphocytic choriomeningitis virus. BMI-1 was upregulated by germinal center B cells in chronic viral infection, correlating with changes to the accessible chromatin landscape, compared to acute infection. B cell-intrinsic deletion of Bmi1 accelerated viral clearance, reduced splenomegaly and restored splenic architecture. Deletion of Bmi1 restored c-Myc expression in B cells, concomitant with improved quality of antibody and coupled with reduced antibody-secreting cell numbers. Specifically, BMI-1-deficiency induced antibody with increased neutralizing capacity and enhanced antibody-dependent effector function. Using a small molecule inhibitor to murine BMI-1, we could deplete antibody-secreting cells and prohibit detrimental immune complex formation in vivo. This study defines BMI-1 as a crucial immune modifier that controls antibody-mediated responses in chronic infection.


Assuntos
Linfócitos B/imunologia , Imunidade Humoral/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Complexo Repressor Polycomb 1/imunologia , Proteínas Proto-Oncogênicas/imunologia , Imunidade Adaptativa/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Feminino , Centro Germinativo/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Immunity ; 56(5): 959-978.e10, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37040762

RESUMO

Although the importance of genome organization for transcriptional regulation of cell-fate decisions and function is clear, the changes in chromatin architecture and how these impact effector and memory CD8+ T cell differentiation remain unknown. Using Hi-C, we studied how genome configuration is integrated with CD8+ T cell differentiation during infection and investigated the role of CTCF, a key chromatin remodeler, in modulating CD8+ T cell fates through CTCF knockdown approaches and perturbation of specific CTCF-binding sites. We observed subset-specific changes in chromatin organization and CTCF binding and revealed that weak-affinity CTCF binding promotes terminal differentiation of CD8+ T cells through the regulation of transcriptional programs. Further, patients with de novo CTCF mutations had reduced expression of the terminal-effector genes in peripheral blood lymphocytes. Therefore, in addition to establishing genome architecture, CTCF regulates effector CD8+ T cell heterogeneity through altering interactions that regulate the transcription factor landscape and transcriptome.


Assuntos
Cromatina , Proteínas Repressoras , Humanos , Sítios de Ligação , Fator de Ligação a CCCTC/metabolismo , Linfócitos T CD8-Positivos/metabolismo , DNA/metabolismo , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
4.
Immunity ; 56(3): 531-546.e6, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36773607

RESUMO

Tissue health is dictated by the capacity to respond to perturbations and then return to homeostasis. Mechanisms that initiate, maintain, and regulate immune responses in tissues are therefore essential. Adaptive immunity plays a key role in these responses, with memory and tissue residency being cardinal features. A corresponding role for innate cells is unknown. Here, we have identified a population of innate lymphocytes that we term tissue-resident memory-like natural killer (NKRM) cells. In response to murine cytomegalovirus infection, we show that circulating NK cells were recruited in a CX3CR1-dependent manner to the salivary glands where they formed NKRM cells, a long-lived, tissue-resident population that prevented autoimmunity via TRAIL-dependent elimination of CD4+ T cells. Thus, NK cells develop adaptive-like features, including long-term residency in non-lymphoid tissues, to modulate inflammation, restore immune equilibrium, and preserve tissue health. Modulating the functions of NKRM cells may provide additional strategies to treat inflammatory and autoimmune diseases.


Assuntos
Infecções por Citomegalovirus , Muromegalovirus , Humanos , Animais , Camundongos , Células Matadoras Naturais , Imunidade Adaptativa , Linfócitos T , Imunidade Inata
5.
Immunity ; 51(2): 285-297.e5, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31272808

RESUMO

Interactions with the microbiota influence many aspects of immunity, including immune cell development, differentiation, and function. Here, we examined the impact of the microbiota on CD8+ T cell memory. Antigen-activated CD8+ T cells transferred into germ-free mice failed to transition into long-lived memory cells and had transcriptional impairments in core genes associated with oxidative metabolism. The microbiota-derived short-chain fatty acid (SCFA) butyrate promoted cellular metabolism, enhanced memory potential of activated CD8+ T cells, and SCFAs were required for optimal recall responses upon antigen re-encounter. Mechanistic experiments revealed that butyrate uncoupled the tricarboxylic acid cycle from glycolytic input in CD8+ T cells, which allowed preferential fueling of oxidative phosphorylation through sustained glutamine utilization and fatty acid catabolism. Our findings reveal a role for the microbiota in promoting CD8+ T cell long-term survival as memory cells and suggest that microbial metabolites guide the metabolic rewiring of activated CD8+ T cells to enable this transition.


Assuntos
Butiratos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Ácidos Graxos Voláteis/metabolismo , Memória Imunológica , Microbiota/imunologia , Transferência Adotiva , Animais , Antígenos/imunologia , Diferenciação Celular , Células Cultivadas , Glicólise , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução
6.
Immunity ; 48(2): 185-187, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466746

RESUMO

Understanding how cell fate decisions are made during cellular differentiation and the mechanisms that drive them is a holy grail of cell biology. In this issue of Immunity, Hu et al. (2018) and Johnson et al. (2018) demonstrate that key transcriptional regulators and global changes in nuclear architecture underlie differentiation decisions during T cell development.


Assuntos
Diferenciação Celular , Linfócitos T
8.
J Immunol ; 211(2): 274-286, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37272871

RESUMO

Cytokines that signal via STAT1 and STAT3 transcription factors instruct decisions affecting tissue homeostasis, antimicrobial host defense, and inflammation-induced tissue injury. To understand the coordination of these activities, we applied RNA sequencing, chromatin immunoprecipitation sequencing, and assay for transposase-accessible chromatin with high-throughput sequencing to identify the transcriptional output of STAT1 and STAT3 in peritoneal tissues from mice during acute resolving inflammation and inflammation primed to drive fibrosis. Bioinformatics focused on the transcriptional signature of the immunomodulatory cytokine IL-6 in both settings and examined how profibrotic IFN-γ-secreting CD4+ T cells altered the interpretation of STAT1 and STAT3 cytokine cues. In resolving inflammation, STAT1 and STAT3 cooperated to drive stromal gene expression affecting antimicrobial immunity and tissue homeostasis. The introduction of IFN-γ-secreting CD4+ T cells altered this transcriptional program and channeled STAT1 and STAT3 to a previously latent IFN-γ activation site motif in Alu-like elements. STAT1 and STAT3 binding to this conserved sequence revealed evidence of reciprocal cross-regulation and gene signatures relevant to pathophysiology. Thus, we propose that effector T cells retune the transcriptional output of IL-6 by shaping a regulatory interplay between STAT1 and STAT3 in inflammation.


Assuntos
Interleucina-6 , Células Th1 , Animais , Camundongos , Citocinas/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Retroelementos , Fatores de Transcrição STAT/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Células Th1/metabolismo
9.
Nat Immunol ; 12(7): 616-23, 2011 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-21666690

RESUMO

Type I natural killer T cells (NKT cells) are characterized by an invariant variable region 14-joining region 18 (V(α)14-J(α)18) T cell antigen receptor (TCR) α-chain and recognition of the glycolipid α-galactosylceramide (α-GalCer) restricted to the antigen-presenting molecule CD1d. Here we describe a population of α-GalCer-reactive NKT cells that expressed a canonical V(α)10-J(α)50 TCR α-chain, which showed a preference for α-glucosylceramide (α-GlcCer) and bacterial α-glucuronic acid-containing glycolipid antigens. Structurally, despite very limited TCRα sequence identity, the V(α)10 TCR-CD1d-α-GlcCer complex had a docking mode similar to that of type I TCR-CD1d-α-GalCer complexes, although differences at the antigen-binding interface accounted for the altered antigen specificity. Our findings provide new insight into the structural basis and evolution of glycolipid antigen recognition and have notable implications for the scope and immunological role of glycolipid-specific T cell responses.


Assuntos
Galactosilceramidas/imunologia , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Adjuvantes Imunológicos/farmacologia , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/imunologia , Antígenos CD1d/imunologia , Linhagem Celular , Galactosilceramidas/farmacologia , Glucuronatos/imunologia , Humanos , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , Receptores de Antígenos de Linfócitos T alfa-beta/genética
10.
Immunity ; 41(6): 960-72, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25526309

RESUMO

Granzyme B (GzmB) is a protease with a well-characterized intracellular role in targeted destruction of compromised cells by cytotoxic lymphocytes. However, GzmB also cleaves extracellular matrix components, suggesting that it influences the interplay between cytotoxic lymphocytes and their environment. Here, we show that GzmB-null effector T cells and natural killer (NK) cells exhibited a cell-autonomous homing deficit in mouse models of inflammation and Ectromelia virus infection. Intravital imaging of effector T cells in inflamed cremaster muscle venules revealed that GzmB-null cells adhered normally to the vessel wall and could extend lamellipodia through it but did not cross it efficiently. In vitro migration assays showed that active GzmB was released from migrating cytotoxic lymphocytes and enabled chemokine-driven movement through basement membranes. Finally, proteomic analysis demonstrated that GzmB cleaved basement membrane constituents. Our results highlight an important role for GzmB in expediting cytotoxic lymphocyte diapedesis via basement membrane remodeling.


Assuntos
Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/imunologia , Granzimas/metabolismo , Células Matadoras Naturais/fisiologia , Linfócitos T Citotóxicos/fisiologia , Animais , Membrana Basal/metabolismo , Movimento Celular/genética , Células Cultivadas , Quimiocinas/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Granzimas/genética , Células Matadoras Naturais/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteólise , Linfócitos T Citotóxicos/virologia , Migração Transendotelial e Transepitelial/genética
11.
Immunity ; 41(5): 853-65, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25517617

RESUMO

The molecular mechanisms that regulate the rapid transcriptional changes that occur during cytotoxic T lymphocyte (CTL) proliferation and differentiation in response to infection are poorly understood. We have utilized ChIP-seq to assess histone H3 methylation dynamics within naive, effector, and memory virus-specific T cells isolated directly ex vivo after influenza A virus infection. Our results show that within naive T cells, codeposition of the permissive H3K4me3 and repressive H3K27me3 modifications is a signature of gene loci associated with gene transcription, replication, and cellular differentiation. Upon differentiation into effector and/or memory CTLs, the majority of these gene loci lose repressive H3K27me3 while retaining the permissive H3K4me3 modification. In contrast, immune-related effector gene promoters within naive T cells lacked the permissive H3K4me3 modification, with acquisition of this modification occurring upon differentiation into effector/memory CTLs. Thus, coordinate transcriptional regulation of CTL genes with related functions is achieved via distinct epigenetic mechanisms.


Assuntos
Diferenciação Celular/genética , Epigênese Genética/imunologia , Histonas/genética , Vírus da Influenza A/imunologia , Linfócitos T Citotóxicos/imunologia , Transferência Adotiva , Animais , Proliferação de Células , Metilação de DNA/genética , Memória Imunológica , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Processamento de Proteína Pós-Traducional , Linfócitos T Citotóxicos/citologia , Transcrição Gênica/imunologia
12.
J Immunol ; 206(7): 1425-1435, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33597151

RESUMO

Mucosal-associated invariant T (MAIT) cells are an innate-like population of unconventional T cells that respond rapidly to microbial metabolite Ags or cytokine stimulation. Because of this reactivity and surface expression of CD45RO+, CD45RA-, and CD127+, they are described as effector memory cells. Yet, there is heterogeneity in MAIT cell effector response. It is unclear what factors control MAIT cell effector capacity, whether it is fixed or can be modified and if this differs based on whether activation is TCR dependent or independent. To address this, we have taken a systematic approach to examine human MAIT cell effector capacity across healthy individuals in response to ligand and cytokine stimulation. We demonstrate the heterogenous nature of MAIT cell effector capacity and that the ability to produce an effector response is not directly attributable to TCR clonotype or coreceptor expression. Global gene transcription analysis revealed that the MAIT cell effector capacity produced in response to TCR stimulation is associated with increased expression of the epigenetic regulator lysine demethylase 6B (KDM6B). Addition of a KDM6B inhibitor did not alter MAIT cell effector function to Ag or cytokine stimulation. However, addition of the KDM6B cofactor α-ketoglutarate greatly enhanced MAIT cell effector capacity to TCR-dependent stimulation in a partially KDM6B-dependent manner. These results demonstrate that the TCR-dependent effector response of MAIT cells is epigenetically regulated and dependent on the availability of metabolic cofactors.


Assuntos
Histona Desmetilases com o Domínio Jumonji/metabolismo , Ácidos Cetoglutáricos/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Células Cultivadas , Citocinas/metabolismo , Epigênese Genética , Humanos , Imunidade Inata , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/metabolismo
14.
Eur J Immunol ; 51(8): 2006-2026, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33960413

RESUMO

The NF-κB transcription factor c-Rel is a critical regulator of Treg ontogeny, controlling multiple points of the stepwise developmental pathway. Here, we found that the thymic Treg defect in c-Rel-deficient (cRel-/- ) mice is quantitative, not qualitative, based on analyses of TCR repertoire and TCR signaling strength. However, these parameters are altered in the thymic Treg-precursor population, which is also markedly diminished in cRel-/- mice. Moreover, c-Rel governs the transcriptional programme of both thymic and peripheral Tregs, controlling a core of genes involved with immune signaling, and separately in the periphery, cell cycle progression. Last, the immune suppressive function of peripheral cRel-/- tTregs is diminished in a lymphopenic model of T cell proliferation and is associated with decreased stability of Foxp3 expression. Collectively, we show that c-Rel is a transcriptional regulator that controls multiple aspects of Treg development, differentiation, and function via distinct mechanisms.


Assuntos
Proteínas Proto-Oncogênicas c-rel/imunologia , Proteínas Proto-Oncogênicas c-rel/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Diferenciação Celular/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Timo/imunologia , Timo/metabolismo
15.
Immunol Cell Biol ; 100(8): 636-652, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35713361

RESUMO

Special AT-binding protein 1 (SATB1) is a chromatin-binding protein that has been shown to be a key regulator of T-cell development and CD4+ T-cell fate decisions and function. The underlying function for SATB1 in peripheral CD8+ T-cell differentiation processes is largely unknown. To address this, we examined SATB1-binding patterns in naïve and effector CD8+ T cells demonstrating that SATB1 binds to noncoding regulatory elements linked to T-cell lineage-specific gene programs, particularly in naïve CD8+ T cells. We then assessed SATB1 function using N-ethyl-N-nitrosourea-mutant mice that exhibit a point mutation in the SATB1 DNA-binding domain (termed Satb1m1Anu/m1Anu ). Satb1m1Anu/m1Anu mice exhibit diminished SATB1-binding, naïve, Satb1m1Anu/m1Anu CD8+ T cells exhibiting transcriptional and phenotypic characteristics reminiscent of effector T cells. Upon activation, the transcriptional signatures of Satb1m1Anu/m1Anu and wild-type effector CD8+ T cells converged. While there were no overt differences, primary respiratory infection of Satb1m1Anu/m1Anu mice with influenza A virus (IAV) resulted in a decreased proportion and number of IAV-specific CD8+ effector T cells recruited to the infected lung when compared with wild-type mice. Together, these data suggest that SATB1 has a major role in an appropriate transcriptional state within naïve CD8+ T cells and ensures appropriate CD8+ T-cell effector gene expression upon activation.


Assuntos
Vírus da Influenza A , Proteínas de Ligação à Região de Interação com a Matriz , Animais , Linfócitos T CD8-Positivos , Diferenciação Celular , Ativação Linfocitária , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Camundongos
16.
PLoS Pathog ; 16(5): e1008244, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32365082

RESUMO

Viral escape from CD8+ cytotoxic T lymphocyte responses correlates with disease progression and represents a significant challenge for vaccination. Here, we demonstrate that CD8+ T cell recognition of the naturally occurring MHC-I-restricted LCMV-associated immune escape variant Y4F is restored following vaccination with a proline-altered peptide ligand (APL). The APL increases MHC/peptide (pMHC) complex stability, rigidifies the peptide and facilitates T cell receptor (TCR) recognition through reduced entropy costs. Structural analyses of pMHC complexes before and after TCR binding, combined with biophysical analyses, revealed that although the TCR binds similarly to all complexes, the p3P modification alters the conformations of a very limited amount of specific MHC and peptide residues, facilitating efficient TCR recognition. This approach can be easily introduced in peptides restricted to other MHC alleles, and can be combined with currently available and future vaccination protocols in order to prevent viral immune escape.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Vírus da Coriomeningite Linfocítica/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Antivirais/metabolismo , Linfócitos T CD8-Positivos/fisiologia , Proteínas de Ligação a DNA/imunologia , Epitopos/imunologia , Epitopos de Linfócito T/imunologia , Genes RAG-1/imunologia , Ligantes , Ativação Linfocitária/imunologia , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peptídeos/metabolismo , Prolina/metabolismo , Ligação Proteica , Linfócitos T Citotóxicos/imunologia , Vacinação/métodos
17.
J Immunol ; 204(12): 3108-3116, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32341060

RESUMO

Naive CD8+ T cell survival in the periphery is critically dependent on tonic TCR signaling through peptide + MHC class I (MHCI) recognition; however, little is known about how natural variation in MHCI levels impacts the naive CD8+ T cell repertoire. Using mice that are hemizygous or homozygous for a single MHCI allele, we showed that despite a reduction in peripheral CD8+ T cell numbers of ∼50% in MHCI hemizygous mice, MHCI levels had no notable impact on the rate of thymic generation or emigration of CD8 single-positive T cells. Moreover, the peripheral T cell repertoire in hemizygous mice showed selective retention of T cell clonotypes with a greater competitive advantage as evidenced by increased expression of CD5 and IL-7Rα. The qualitative superiority of CD8+ T cells retained in hemizygous mice was also seen during influenza A virus infection, in which epitope-specific CD8+ T cells from hemizygous mice had a higher avidity for pMHCI and increased cytokine polyfunctionality, despite a reduced response magnitude. Collectively, this study suggests that natural variation in MHCI expression levels has a notable and biologically relevant impact on the maintenance, but not generation, of the naive CD8+ T cell repertoire.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Genes MHC Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Animais , Antígenos CD5/imunologia , Feminino , Vírus da Influenza A/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Interleucina-7/imunologia
18.
Proc Natl Acad Sci U S A ; 116(10): 4481-4488, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30787194

RESUMO

There is continued interest in developing novel vaccine strategies that induce establish optimal CD8+ cytotoxic T lymphocyte (CTL) memory for pathogens like the influenza A viruses (IAVs), where the recall of IAV-specific T cell immunity is able to protect against serologically distinct IAV infection. While it is well established that CD4+ T cell help is required for optimal CTL responses and the establishment of memory, when and how CD4+ T cell help contributes to determining the ideal memory phenotype remains unclear. We assessed the quality of IAV-specific CD8+ T cell memory established in the presence or absence of a concurrent CD4+ T cell response. We demonstrate that CD4+ T cell help appears to be required at the initial priming phase of infection for the maintenance of IAV-specific CTL memory, with "unhelped" memory CTL exhibiting intrinsic dysfunction. High-throughput RNA-sequencing established that distinct transcriptional signatures characterize the helped vs. unhelped IAV-specific memory CTL phenotype, with the unhelped set showing a more "exhausted T cell" transcriptional profile. Moreover, we identify that unhelped memory CTLs exhibit defects in a variety of energetic pathways, leading to diminished spare respiratory capacity and diminished capacity to engage glycolysis upon reactivation. Hence, CD4+ T help at the time of initial priming promotes molecular pathways that limit exhaustion by channeling metabolic processes essential for the rapid recall of memory CD8+ T cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Vírus da Influenza A/imunologia , Animais , Feminino , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa , Transcrição Gênica
19.
Int J Mol Sci ; 23(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35628580

RESUMO

Over 50% of the world's population is infected with Human Cytomegalovirus (HCMV). HCMV is responsible for serious complications in the immuno-compromised and is a leading cause of congenital birth defects. The molecular function of many HCMV proteins remains unknown, and a deeper understanding of the viral effectors that modulate virion maturation is required. In this study, we observed that UL34 is a viral protein expressed with leaky late kinetics that localises to the nucleus during infection. Deletion of UL34 from the HCMV genome (ΔUL34) did not abolish the spread of HCMV. Instead, over >100-fold fewer infectious virions were produced, so we report that UL34 is an augmenting gene. We found that ΔUL34 is dispensable for viral DNA replication, and its absence did not alter the expression of IE1, MCP, gB, UL26, UL83, or UL99 proteins. In addition, ΔUL34 infections were able to progress through the replication cycle to form a viral assembly compartment; however, virion maturation in the cytoplasm was abrogated. Further examination of the nucleus in ΔUL34 infections revealed replication compartments with aberrant morphology, containing significantly less assembled capsids, with almost none undergoing subsequent maturation. Therefore, this work lays the foundation for UL34 to be further investigated in the context of nuclear organization and capsid maturation during HCMV infection.


Assuntos
Capsídeo , Citomegalovirus , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Citomegalovirus/genética , Citomegalovirus/metabolismo , Replicação do DNA , DNA Viral/metabolismo , Humanos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
20.
J Biol Chem ; 295(47): 15797-15809, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32994224

RESUMO

Regulatory elements (REs) consist of enhancers and promoters that occupy a significant portion of the noncoding genome and control gene expression programs either in cis or in trans Putative REs have been identified largely based on their regulatory features (co-occupancy of ESC-specific transcription factors, enhancer histone marks, and DNase hypersensitivity) in mouse embryonic stem cells (mESCs). However, less has been established regarding their regulatory functions in their native context. We deployed cis- and trans-regulatory elements scanning through saturating mutagenesis and sequencing (ctSCAN-SMS) to target elements within the ∼12-kb cis-region (cis-REs; CREs) of the Oct4 gene locus, as well as genome-wide 2,613 high-confidence trans-REs (TREs), in mESCs. ctSCAN-SMS identified 10 CREs and 12 TREs as novel candidate REs of the Oct4 gene in mESCs. Furthermore, deletions of these candidate REs confirmed that the majority of the REs are functionally active, and CREs are more active than TREs in controlling Oct4 gene expression. A subset of active CREs and TREs physically interact with the Oct4 promoter to varying degrees; specifically, a greater number of active CREs, compared with active TREs, physically interact with the Oct4 promoter. Moreover, comparative genomics analysis reveals that a greater number of active CREs than active TREs are evolutionarily conserved between mice and primates, including humans. Taken together, our study demonstrates the reliability and robustness of ctSCAN-SMS screening to identify critical REs and investigate their roles in the regulation of transcriptional output of a target gene (in this case Oct4) in their native context.


Assuntos
Loci Gênicos , Células-Tronco Embrionárias Murinas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Elementos Reguladores de Transcrição , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Fator 3 de Transcrição de Octâmero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA