RESUMO
Traumatic spinal cord injury is an overwhelming condition that strongly and suddenly impacts the patient's life and her/his entourage. There are currently no predictable treatments to repair the spinal cord, while many strategies are proposed and evaluated by researchers throughout the world. One of the most promising avenues is the transplantation of stem cells, although its therapeutic efficiency is limited by several factors, among which cell survival at the lesion site. In our previous study, we showed that the implantation of a human dental apical papilla, residence of stem cells of the apical papilla (SCAP), supported functional recovery in a rat model of spinal cord hemisection. In this study, we employed protein multiplex, immunohistochemistry, cytokine arrays, RT- qPCR, and RNAseq technology to decipher the mechanism by which the dental papilla promotes repair of the injured spinal cord. We found that the apical papilla reduced inflammation at the lesion site, had a neuroprotective effect on motoneurons, and increased the apoptosis of activated macrophages/ microglia. This therapeutic effect is likely driven by the secretome of the implanted papilla since it is known to secrete an entourage of immunomodulatory or pro-angiogenic factors. Therefore, we hypothesize that the secreted molecules were mainly produced by SCAP, and that by anchoring and protecting them, the human papilla provides a protective niche ensuring that SCAP could exert their therapeutic actions. Therapeutic abilities of the papilla were demonstrated in the scope of spinal cord injury but could very well be beneficial to other types of tissue.
Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Animais , Feminino , Humanos , Microglia , Ratos , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Células-TroncoRESUMO
Intranasal administration is an efficient strategy for bypassing the BBB, favoring drug accumulation in the brain, and improving its efficiency. Lipid nanocapsules (LNC) are suitable nanocarriers for the delivery of lipophilic drugs via this route and can be used to encapsulate lipophilic molecules such as retinoic acid (RA) and calcitriol (Cal). As the hallmarks of multiple sclerosis (MS) are neuroinflammation and oligodendrocyte loss, our hypothesis was that by combining two molecules known for their pro-differentiating properties, encapsulated in LNC, and delivered by intranasal administration, we would stimulate oligodendrocyte progenitor cells (OPC) differentiation into oligodendrocytes and provide a new pro-remyelinating therapy. LNC loaded with RA (LNC-RA) and Cal (LNC-Cal) were stable for at least 8 weeks. The combination of RA and Cal was more efficient than the molecules alone, encapsulated or not, on OPC differentiation in vitro and decreased microglia cell activation in a dose-dependent manner. After the combined intranasal administration of LNC-RA and LNC-Cal in a mouse cuprizone model of demyelination, increased MBP staining was observed in the corpus callosum. In conclusion, intranasal delivery of lipophilic drugs encapsulated in LNC is a promising strategy for myelinating therapies.
Assuntos
Administração Intranasal , Calcitriol , Diferenciação Celular , Nanocápsulas , Células Precursoras de Oligodendrócitos , Tretinoína , Animais , Tretinoína/administração & dosagem , Tretinoína/farmacologia , Diferenciação Celular/efeitos dos fármacos , Calcitriol/administração & dosagem , Calcitriol/farmacologia , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Lipídeos/química , Células Cultivadas , MasculinoRESUMO
Glioblastoma (GBM) treatment includes, when possible, surgical resection of the tumor followed by radiotherapy and oral chemotherapy with temozolomide, however recurrences quickly develop around the resection cavity borders leading to patient death. We hypothesize that the local delivery of Lauroyl-gemcitabine lipid nanocapsule based hydrogel (GemC12-LNC) in the tumor resection cavity of GBM is a promising strategy as it would allow to bypass the blood brain barrier, thus reaching high local concentrations of the drug. The cytotoxicity and internalization pathways of GemC12-LNC were studied on different GBM cell lines (U251, T98-G, 9L-LacZ, U-87 MG). The GemC12-LNC hydrogel was well tolerated when injected in mouse brain. In an orthotopic xenograft model, after intratumoral administration, GemC12-LNC significantly increased mice survival compared to the controls. Moreover, its ability to delay tumor recurrences was demonstrated after perisurgical administration in the GBM resection cavity. In conclusion, we demonstrate that GemC12-LNC hydrogel could be considered as a promising tool for the post-resection management of GBM, prior to the standard of care chemo-radiation.
Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Desoxicitidina/análogos & derivados , Glioblastoma/tratamento farmacológico , Hidrogéis/administração & dosagem , Nanocápsulas/administração & dosagem , Animais , Antimetabólitos Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/cirurgia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Desoxicitidina/uso terapêutico , Feminino , Glioblastoma/metabolismo , Glioblastoma/cirurgia , Humanos , Hidrogéis/uso terapêutico , Injeções , Lipídeos/administração & dosagem , Lipídeos/uso terapêutico , Camundongos , Nanocápsulas/uso terapêutico , Nanomedicina , Ensaios Antitumorais Modelo de Xenoenxerto , GencitabinaRESUMO
The local delivery of chemotherapeutic agents is a very promising strategy for the treatment of glioblastoma (GBM). Gemcitabine is a chemotherapeutic agent that has a different mechanism of action compared to alkylating agents and shows excellent radio-sensitizing properties. So, we developed an injectable gel-like nanodelivery system consisting in lipid nanocapsules loaded with anticancer prodrug lauroyl-gemcitabine (GemC12-LNC) in order to obtain a sustained and local delivery of this drug in the brain. In this study, the GemC12-LNC has been formulated and characterized and the viscoelastic properties of the hydrogel were evaluated after extrusion from 30G needles. This system showed a sustained and prolonged in vitro release of the drug over one month. GemC12 and the GemC12-LNC have shown increased in vitro cytotoxic activity on U-87 MG glioma cells compared to the parent hydrophilic drug. The GemC12-LNC hydrogel reduced significantly the size of a subcutaneous human GBM tumor model compared to the drug and short-term tolerability studies showed that this system is suitable for local treatment in the brain. In conclusion, this proof-of-concept study demonstrated the feasibility, safety and efficiency of the injectable GemC12-LNC hydrogel for the local treatment of GBM.
Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Desoxicitidina/análogos & derivados , Glioblastoma/tratamento farmacológico , Hidrogéis/administração & dosagem , Nanocápsulas/administração & dosagem , Animais , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Preparações de Ação Retardada/uso terapêutico , Desoxicitidina/administração & dosagem , Desoxicitidina/química , Desoxicitidina/uso terapêutico , Liberação Controlada de Fármacos , Feminino , Glioblastoma/patologia , Humanos , Hidrogéis/química , Hidrogéis/uso terapêutico , Injeções , Lipídeos/administração & dosagem , Lipídeos/química , Lipídeos/uso terapêutico , Camundongos Nus , Nanocápsulas/química , Nanocápsulas/uso terapêutico , Agulhas , Reologia , Carga Tumoral/efeitos dos fármacos , GencitabinaRESUMO
Stem cells of the apical papilla (SCAP) represent great promise regarding treatment of neural tissue damage, such as spinal cord injury (SCI). They derive from the neural crest, express numerous neurogenic markers, and mediate neurite outgrowth and axonal targeting. The goal of the present work was to investigate for the first time their potential to promote motor recovery after SCI in a rat hemisection model when delivered in their original stem cell niche-that is, by transplantation of the human apical papilla tissue itself into the lesion. Control groups consisted of animals subjected to laminectomy only (shams) and to lesion either untreated or injected with a fibrin hydrogel with or without human SCAP. Basso-Beattie-Bresnahan locomotor scores at 1 and 3 d postsurgery confirmed early functional decline in all SCI groups. This significant impairment was reversed, as seen in CatWalk analyses, after transplantation of apical papilla into the injured spinal cord wound, whereas the other groups demonstrated persistent functional impairment. Moreover, tactile allodynia did not develop as an unwanted side effect in any of the groups, even though the SCAP hydrogel group showed higher expression of the microglial marker Iba-1, which has been frequently associated with allodynia. Notably, the apical papilla transplant group presented with reduced Iba-1 expression level. Masson trichrome and human mitochondria staining showed the preservation of the apical papilla integrity and the presence of numerous human cells, while human cells could no longer be detected in the SCAP hydrogel group at the 6-wk postsurgery time point. Altogether, our data suggest that the transplantation of a human apical papilla at the lesion site improves gait in spinally injured rats and reduces glial reactivity. It also underlines the potential interest for the application of delivering SCAP in their original niche, as compared with use of a fibrin hydrogel.
Assuntos
Papila Dentária/transplante , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco/métodos , Adolescente , Animais , Dor Crônica/terapia , Papila Dentária/citologia , Humanos , Locomoção , Ratos , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/patologia , Resultado do TratamentoRESUMO
We developed dual paclitaxel (PTX)/superparamagnetic iron oxide (SPIO)-loaded PLGA-based nanoparticles for a theranostic purpose. Nanoparticles presented a spherical morphology and a size of 240 nm. The PTX and iron loading were 1.84 ± 0.4 and 10.4 ± 1.93 mg/100 mg respectively. Relaxometry studies and phantom MRI demonstrated their efficacy as T2 contrast agent. Significant cellular uptake by CT26 cells of nanoparticles was shown by Prussian blue staining and fluorescent microscopy. While SPIO did not show any toxicity in CT-26 cells, PTX-loaded nanoparticles had a cytotoxic activity. PTX-loaded nanoparticle (5 mg/kg) with or without co-encapulated SPIO induced in vivo a regrowth delay of CT26 tumors. Together these multifunctional nanoparticles may be considered as future nanomedicine for simultaneous molecular imaging, drug delivery and real-time monitoring of therapeutic response.