Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(15): 157202, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32357040

RESUMO

Interfacial Dzyaloshinskii-Moriya interaction (DMI) is experimentally investigated in Pt/Co/Pt multilayer films under strain. A strong variation (from 0.1 to 0.8 mJ/m^{2}) of the DMI constant is demonstrated at ±0.1% in-plane uniaxial deformation of the films. The anisotropic strain induces strong DMI anisotropy. The DMI constant perpendicular to the strain direction changes sign, while the constant along the strain direction does not. Estimates show that the DMI can be controlled with an electric field in hybrid ferroelectric-ferromagnetic systems. So, the observed effect opens the way to control the DMI and eventually skyrmions with a voltage via a strain-mediated magnetoelectric coupling.

2.
J Phys Condens Matter ; 31(41): 415801, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31261142

RESUMO

We investigate the phase separated inhomogeneous charge and spin states in magnetic oxides. In particular, we study one dimensional harmonic waves and stripe structures. We show that harmonic spin charge waves are unstable and inevitably transform into two or three dimensional structures, while the stripe structures can be stable for certain parameters. Such stripe structures may allow the control of magnetic state with electric field in a magnetic oxide thin film.

3.
J Phys Condens Matter ; 29(15): 155801, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28288003

RESUMO

We develop a theory of the exchange interaction between ferromagnetic (FM) metallic grains embedded into insulating matrix by taking into account the Coulomb blockade effects. For bulk ferromagnets separated by the insulating layer the exchange interaction strongly depends on the height and thickness of the tunneling barrier created by the insulator. We show that for FM grains embedded into insulating matrix the exchange coupling additionally depends on the dielectric properties of this matrix due to the Coulomb blockade effects. In particular, the FM coupling decreases with decreasing the dielectric permittivity of insulating matrix. We find that the change in the exchange interaction due to the Coulomb blockade effects can be a few tens of percent. Also, we study dependence of the intergrain exchange interaction on the grain size and other parameters of the system.

4.
J Phys Condens Matter ; 29(17): 175804, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28349898

RESUMO

We study interlayer exchange coupling based on the many-body Coulomb interaction between conduction electrons in magnetic tunnel junction. This mechanism complements the known interaction between magnetic layers based on virtual electron hopping (or spin currents). We find that these two mechanisms have different behavior on system parameters. The Coulomb based coupling may exceed the hopping based exchange. We show that the Coulomb based exchange interaction, in contrast to the hopping based coupling, depends strongly on the dielectric constant of the insulating layer. The dependence of the interlayer exchange interaction on the dielectric properties of the insulating layer in magnetic tunnel junction is similar to magneto-electric effect where electric and magnetic degrees of freedom are coupled. We calculate the interlayer coupling as a function of temperature and electric field for magnetic tunnel junction with ferroelectric layer and show that the exchange interaction between magnetic leads has a sharp decrease in the vicinity of the ferroelectric phase transition and varies strongly with external electric field.

5.
J Phys Condens Matter ; 28(12): 126001, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-26909471

RESUMO

We study the competition of magneto-dipole, anisotropy and exchange interactions in composite three-dimensional multiferroics. Using Monte Carlo simulations we show that magneto-dipole interaction does not suppress the ferromagnetic state caused by the interaction of the ferroelectric matrix and magnetic subsystem. However, the presence of the magneto-dipole interaction influences the order-disorder transition: depending on the strength of magneto-dipole interaction the transition from the ferromagnetic to the superparamagnetic state is accompanied either by the creation of vortices or domains of opposite magnetization. An unusual temperature hysteresis loop occurs in composite multiferroics due to non-monotonic behavior of exchange interaction versus temperature. The origin of this hysteresis is related to the presence of stable magnetic domains which are robust against thermal fluctuations.

6.
J Phys Condens Matter ; 27(18): 186001, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25894743

RESUMO

We study magnetic state and electron transport properties of composite multiferroic system consisting of a granular ferromagnetic thin film placed above the ferroelectric substrate. Ferroelectricity and magnetism in this case are coupled by the long-range Coulomb interaction. We show that magnetic state and magneto-transport strongly depend on temperature, external electric field and electric polarization of the substrate. Ferromagnetic order exists at finite temperature range around ferroelectric Curie point. Outside the region the film is in the superparamagnetic state. We demonstrate that magnetic phase transition can be driven by an electric field and magneto-resistance effect has two maxima associated with two magnetic phase transitions appearing in the vicinity of the ferroelectric phase transition. We show that positions of these maxima can be shifted by the external electric field and that the magnitude of the magneto-resistance effect depends on the mutual orientation of external electric field and polarization of the substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA